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verfügbar.





Abstract

Besides functional correctness, one of the most important prerequisites
for the success of a piece of software is efficiency: The desired results need
to be computed not only correctly, but also in time. Thus, analyzing the
runtime complexity of software is indispensable in practice.
On the other hand, analyzing the complexity of large programs manually
is infeasible. Hence, automated complexity analysis techniques are needed.
In this way, performance pitfalls can be highlighted automatically like
other bugs which can nowadays be found by compilers or static analyzers.
However, statically analyzing the complexity of real-world programs poses
several problems. For example, most programming languages lack formal
semantics. Moreover, different programming languages offer different
features, so static analyses for one language do not necessarily apply to
others. A common solution for these problems is to transform programs
into low-level formalisms like term or integer rewrite systems that can be
analyzed without worrying about language-specific peculiarities.
Unfortunately, state-of-the-art complexity analysis techniques for rewrite
systems have several limitations. Firstly, most of them are restricted to
the inference of upper bounds on the worst-case complexity. Moreover,
existing complexity analyzers only reach their full potential if an eager
evaluation strategy is fixed, which is sometimes undesired in practice.
Finally, many techniques for integer rewriting just support tail recursion.
This thesis partially overcomes these limitations. To this end, the first
techniques for the inference of lower bounds on the worst-case complexity
are introduced. One important use case of such lower bounds is to witness
denial-of-service vulnerabilities (whose absence can be proven via upper
bounds), which arise if the runtime of a program exceeds expectations.
Regarding upper bounds, this thesis shows how complexity analysis tech-
niques for term rewriting which require an eager evaluation strategy can
also be used without assuming eager evaluation. Similarly, it shows how
complexity analysis techniques for integer rewriting which are restricted
to tail recursion can also be used to analyze non-tail-recursive systems.
Consequently, complexity-preserving transformations to rewrite systems
can now be used for more applications – like the detection of denial-of-
service vulnerabilities – and richer classes of programs. This is true for
both programs operating on integers as well as programs operating on
tree-shaped data, which can naturally be transformed to integer and term
rewrite systems, respectively. Hence, this thesis covers a large subset of
the features provided by real-world programming languages.
The presented techniques were implemented in the tools AProVE and
LoAT, which can analyze the complexity of rewrite systems fully au-
tomatically. Extensive experiments demonstrate the feasibility of the
presented techniques in practice.





Abstract

Neben Korrektheit ist Effizienz eine der wichtigsten Voraussetzungen für
den Erfolg von Software: Das gesuchte Ergebnis muss nicht nur korrekt,
sondern auch rechtzeitig berechnet werden. Deshalb ist es in der Praxis
unverzichtbar, die Laufzeitkomplexität von Software zu analysieren.
Allerdings ist es unpraktikabel, die Komplexität von Programmen manuell
zu analysieren. Folglich werden automatische Techniken benötigt. So
können Performance-Probleme genauso automatisiert gefunden werden
wie andere Fehler, die von Tools zur statischen Analyse erkannt werden.
Jedoch bringt es etliche Probleme mit sich, die Komplexität realistischer
Programme statisch zu analysieren. Zum Beispiel haben die meisten
Programmiersprachen keine formale Semantik. Zudem unterscheiden sich
verschiedene Sprachen mitunter stark, sodass statische Analysen für eine
Sprache oft nicht auf andere übertragbar sind. Eine verbreitete Lösung
ist, Programme in Reduktionssysteme, insbesondere Term- oder Integer-
Ersetzungssysteme, zu übersetzen und deren Komplexität zu analysieren.
Leider haben aktuelle Techniken zur Analyse von Reduktionssystemen
zahlreiche Einschränkungen. Zunächst sind die meisten Techniken auf die
Inferenz oberer Schranken für die Worst-Case-Komplexität beschränkt.
Außerdem können aktuelle Tools ihre Stärken nur unter der Annahme
einer strikten Auswertungsstrategie voll ausspielen. Schließlich unterstüt-
zen viele Techniken für Integer-Ersetzung ausschließlich Endrekursion.
Diese Arbeit überwindet die genannten Limitierungen teilweise. Sie stellt
unter anderem die ersten Techniken zur Inferenz unterer Schranken für
die Worst-Case-Komplexität vor. Eine wichtige Anwendung für solche
Schranken ist das Finden von Denial-of-Service-Angriffsmöglichkeiten, die
entstehen, wenn die Laufzeit eines Programms größer ist als erwartet.
Bezüglich oberer Schranken zeigt diese Arbeit, wie Techniken für Termer-
setzung, die eine strikte Auswertungsstrategie erfordern, genutzt werden
können, ohne eine bestimmte Strategie vorauszusetzen. Ebenso zeigt sie,
wie Techniken für Integer-Ersetzung, die auf Endrekursion eingeschränkt
sind, auch für nicht endrekursive Systeme genutzt werden können.
Somit können Übersetzungen in Reduktionssysteme nun für ausdrucks-
stärkere Klassen von Programmen und neue Anwendungsfälle eingesetzt
werden, z.B. die Erkennung von Denial-of-Service-Angriffsmöglichkeiten.
Dies gilt insbesondere für Programme, die auf Integern oder baumförmig-
en Datenstrukturen arbeiten, da sich diese auf natürliche Art und Weise
in Integer- bzw. Termersetzung übersetzen lassen. Folglich deckt diese
Arbeit große Teile der Features realistischer Programmiersprachen ab.
Die präsentierten Techniken wurden in den Tools AProVE und LoAT
implementiert, die die Komplexität von Reduktionssystemen vollautoma-
tisch analysieren können. Ausführliche Experimente demonstrieren ihre
praktische Anwendbarkeit.
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Introduction

Analyzing the runtime complexity of software is highly relevant in practice:
Even software that complies with its (functional) specification can be practically
unusable if it does not get its job done within a reasonable amount of time.
If a piece of software performs reasonably well in everyday use, it may still
require an unacceptable amount of computation time when fed with malicious,
unexpected inputs, resulting in denial-of-service vulnerabilities. Note that
these observations also carry over to other kinds of resources like memory or
bandwidth.
On the other hand, analyzing the complexity of software manually is a cum-
bersome and complex task, even for small programs. For realistically sized
programs, a manual analysis is essentially infeasible. Thus, automated tech-
niques are required to take the burden of analyzing a program’s complexity
from its developers.
Recent advances in program analysis yield efficient methods to find upper

input size
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nt
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Worst-Case Upper Bound
Worst-Case Runtime
Worst-Case Lower Bound
Best-Case Runtime
Best-Case Lower Bound

Figure 1.1: Different Kinds of Runtime Bounds

3



Chapter 1. Introduction

bounds on the complexity of various kinds of programs automatically (e.g.,
[3, 6, 27, 48, 50, 51, 82, 114]). Here, one usually considers “worst-case complex-
ity”, i.e., for any initial state s, one analyzes the length of the longest execution
starting from s. But in many cases, in addition to upper bounds, it is also im-
portant to find lower bounds for this notion of complexity. To clarify our notion
of lower bounds, consider Figure 1.1. Note that the complexity of a program
is usually expressed in terms of a function which maps the size of the input
(which corresponds to the horizontal axis in Figure 1.1) to the runtime of the
program (corresponding to the vertical axis in Figure 1.1) for an input of that
size. Thereby, the size of the input is defined according to some size measure or
norm which maps the input of a program to the natural numbers. For example,
lists might be measured by their length or trees might be measured by their
height or their number of nodes. However, as most common size measures are
not injective, there are usually several inputs of the same size. Hence, instead
of one function, one obtains two functions: One for the worst-case complexity
(solid black line in Figure 1.1), which maps a number n to the maximal runtime
for all inputs of size n and one for the best-case complexity (dashed black line
in Figure 1.1), which maps a number n to the minimal runtime for all inputs
of size n.
As mentioned before, most existing automated complexity analysis techniques
focus on the inference of worst-case upper bounds (blue line in Figure 1.1).
Apart from that, some techniques are concerned with the inference of best-case
lower bounds (green line in Figure 1.1), e.g., [3, 48].1 While the relevance of
worst-case upper bounds is widely accepted, best-case lower bounds also have
interesting applications. For example, they can guarantee that a task will
take long enough to compensate the overhead of running it remotely [3, 40].
In contrast to worst-case upper and best-case lower bounds, worst-case lower
bounds have been neglected by the research community so far. In this thesis,
we exclusively focus on worst-case complexity, i.e., besides worst-case upper
bounds, we are also interested in the inference of worst-case lower bounds (red
line in Figure 1.1). In the following, we just use the terms “upper” resp. “lower
bound” to refer to worst-case upper and lower bounds, respectively.
To see the importance of lower bounds, note that by combining them with an
analysis for upper bounds they can be used to infer tight complexity bounds.
Lower bounds also have important applications in security analysis, e.g., to
detect possible denial-of-service vulnerabilities. In contrast, upper bounds are
useful to prove the absence of such vulnerabilities. Thus, techniques to infer
lower and upper bounds on the worst-case complexity of programs complement
each other.
However, statically analyzing (the complexity or any other property of) pro-
grams written in real-world programming languages like Java or C directly is
not ideal for various reasons.

1I am not aware of any techniques for the inference of best-case upper bounds, which is
the reason why they are missing in Figure 1.1.
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• Programming languages offer various features which are convenient for pro-
grammers, but complicate static analyses. For example, virtual method
calls are crucial for object-oriented programming. In contrast, for static
analyses it is desirable to know the actual implementation of the invoked
method.

• Most programming languages do not have formal semantics. Thus, static
analyses have to “fill the gaps” in the informal specification by “best
guesses”.

• The semantics of programming languages change over time.

• Different programming languages offer different features, so static analyses
for one language do not apply to other languages.

For these – and various other – reasons, it is favorable to decouple language
specific features and the (underspecified and changing) semantics of program-
ming languages from static analyses whenever possible. While intermediate
compiler representations of programming languages like JBC or LLVM are a
first step towards this goal, they are still rather designed for practice than for
verification. Thus, it is advantageous to further transform such intermediate
representations to formally specified models of computation like rewrite systems.
Two important flavors of rewrite systems are term rewrite systems and integer
rewrite systems. While the former correspond to first-order functional programs,
the latter correspond to integer programs, i.e., programs where all variables are
of type int.
Transformations from, e.g., Haskell [63] to term rewrite systems and from C
[119] to integer rewrite systems have been used for termination analysis for
many years. In contrast to the compilation from, for example, C to LLVM,
such transformations are usually not designed to preserve the semantics of the
original program. Instead, their intention is to preserve the analyzed property
like, for instance, the termination behavior or the complexity of the original
program. Consequently, existing transformations from, e.g., the area of termi-
nation analysis, are not necessarily suitable for complexity analysis. Developing
complexity-preserving transformations from programming languages to rewrite
systems is an active field of research [51, 76, 101].
Clearly, this research has to be complemented by powerful complexity analysis
techniques for the resulting rewrite systems. In this thesis, we present techniques
to analyze the worst-case complexity of the two previously mentioned flavors
of rewriting (integer and term rewriting). Here, we consider lower as well as
upper bounds.

5



1.1 Structure of the Thesis

In Section 1.2, we compare rewrite systems with programming languages to
clarify to what extent complexity analysis techniques for rewrite systems can
also be used to analyze the complexity of real-world programs. Thereby, we
highlight open problems regarding automated complexity analysis of rewrite
systems and we mention which of these problems are tackled in this thesis.
Section 1.3 gives a high-level overview of the contributions of this thesis. To
this end, it informally states the underlying ideas of the complexity analysis
techniques presented afterwards in Part II and Part III. Moreover, it clarifies
the significance of the presented techniques by mentioning use cases and unique
features in comparison to related work. Finally, it provides information about
all prior publications of the author and explains their relation to this thesis.
Section 1.4 briefly discusses the state-of-the-art. Moreover, it mentions related
fields of research and their relevance for this thesis. A more detailed discussion
of relevant related work can be found after the presentation of the respective
complexity analysis techniques, i.e., in Sections 4.7, 5.4, 8.5, 9.10, 10.3, and 11.3.
Chapter 2 introduces the required preliminaries, in particular a novel framework
for the formalization of complexity analysis techniques.
After a short introduction (Chapter 3), Part II presents two complexity analysis
techniques for programs operating on integers in Chapter 4 and Chapter 5.
Since the kind of programs considered in these chapters differ, each of them
starts with the definition of the respective program model (Section 4.1 and
Section 5.1) and ends with a separated experimental evaluation (Section 4.8
and Section 5.5).
Part III entirely focuses on complexity analysis techniques for term rewriting.
After an introduction (Chapter 6) and the presentation of the program model
and other preliminaries (Chapter 7), four different complexity analysis tech-
niques for term rewriting are introduced. The first two techniques focus on
lower bounds (Chapter 8 and Chapter 9), the third technique considers upper
bounds (Chapter 10), and the last technique has applications for both lower
and upper bounds (Chapter 11). Since all of these techniques consider the same
program model, they are evaluated together in Chapter 12.
Finally, we conclude in Chapter 13, where we also give an outlook on possi-
ble future developments. Thereby, we focus on extensions of the presented
techniques to richer classes of rewrite systems, whereas possible improvements
w.r.t. the same class of rewrite systems are discussed in the respective chapters
in Sections 4.9, 5.6, 8.6, 9.11, 10.4, and 11.4.
In Appendix A, we provide those theorems, lemmas, and proofs which are
omitted in the main part of this thesis. In Appendix B, we provide the names
of those examples which are mentioned in our experimental evaluation as their
results are particularly interesting in some sense.
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1.2 Rewrite Systems and their Relation to
Programming Languages

In this section, we give an overview over existing flavors of rewriting and compare
them with real-word programming languages. In particular, we mention the
restrictions of the different kinds of rewriting and of existing techniques to
analyze them. Moreover, we point out which of these restrictions are tackled
in this thesis.
Table 1.1 shows an overview of various flavors of rewrite systems, including
all kinds of rewrite systems which are considered in this thesis. To clarify
their relevance w.r.t. the analysis of real-world programming languages, their
features are compared with object-oriented programming languages (OOP) like
Java and functional programming languages (FP) like Haskell.
All rewrite systems in Table 1.1 are special cases of logically constrained term
rewrite systems (LCTRSs) [59] which extend classical term rewrite systems
with arbitrary built-in data types like integers (Z) or floating point numbers
(F). Thus, LCTRSs allow, e.g., rules like the following, which (together with a
corresponding implementation of fib) computes a list of Fibonacci numbers.

fiblist(n, r)→ fiblist(n− 1, cons(fib(n), r)) [n > 0] (1.1)

It uses arithmetic (“n− 1” on the right-hand side), nested procedure calls (fib
below fiblist on the right-hand side), data structures (as cons on the right-hand
side is used to represent lists), and logical constraints to restrict the control
flow (i.e., the condition “n > 0” means that the rule can only be applied if n is
instantiated with a positive number). While (1.1) just uses integer arithmetic,
as mentioned above LCTRSs also allow other built-in data types.
Thus, LCTRSs offer most features of real-world programming language, with

arithmetic data proceduresstruct.

N Z F + ♦ void non-void non-eager
eval.

LITS X X
ITS X X X
RNTS X X X
IRS X X X X X
TRS X X X X
ITRS X X X X X X
LCTRS X X X X X X X
OOP X X X X X X X
FP X X X X X X X X

Table 1.1: Rewrite systems compared with programming languages
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Chapter 1. Introduction

the exception of non-tree-shaped data structures (♦). Examples for such data
structures are graphs in object-oriented languages or cyclic lists in functional
languages like Haskell. Such data structures are considered in graph rewriting
[16, 30, 31], which is beyond the scope of this thesis. Like in classical term
rewriting, tree-shaped data structures (+) can be represented by terms.
While the tool Ctrl [94] can analyze termination (and some other properties) of
LCTRSs with various built-in data types, there are no complexity analysis tools
for LCTRSs. The same holds for integer term rewrite systems (ITRSs) [58],
which predate LCTRSs and can be seen as LCTRSs with the single built-in
data type Z (i.e., (1.1) is also a valid ITRS rule). Termination of ITRSs can be
analyzed by AProVE [62].
LCTRSs without any built-in data types are classical term rewrite systems
(TRSs). Thus, TRSs are suitable to implement algorithms operating on tree-
shaped data structures like lists or trees. For example, the TRS rule

traverse(tree(l, r))→ tree(traverse(l), traverse(r))

implements a tree traversal algorithm. In contrast, (1.1) is not a valid TRS rule
because of its use of arithmetic and logical constraints. Due to their support
for tree-shaped data structures, real-world programs operating on such data
structures can be transformed to TRSs in a natural way. Moreover, built-in
data types like integers can be simulated in TRSs by encoding them as terms.
For example, a natural number n can be represented by the term succn(zero)
(i.e., the n-fold application of a “successor” function symbol succ to a function
symbol representing zero). Then (1.1) becomes

fiblist(succ(n), r)→ fiblist(n, cons(fib(n), r)).

Such an approach is used by the translation from Haskell to term rewriting in
[63]. However, as discussed in [58], a significant drawback of such an encoding
is the loss of domain specific knowledge.
A novel technique to deduce upper bounds for TRSs is introduced in Chapter 10.
In contrast to the many previous complexity analysis techniques for TRSs, it
focuses on the inference of constant upper bounds and, in particular, it serves
as a semi-decision procedure for this purpose.
While the inference of upper bounds on the complexity of TRSs has been widely
studied, so far there were no techniques to infer lower bounds. This gap is closed
in Chapter 8 and Chapter 9.
As in the case of real-world programming languages, an evaluation strategy
needs to be fixed in order to evaluate LCTRSs, ITRSs, or TRSs.2 For example,
Java is evaluated eagerly, i.e., all arguments are fully evaluated before a method
is invoked. In contrast, Haskell uses lazy evaluation, i.e., the arguments of a
function f are not evaluated until their value is required to continue the evalua-

2While [58] just considers eagerly evaluated ITRSs, one could define other evaluation
strategies as in [59].
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tion of f . While eager evaluation is standard for imperative and object-oriented
programming languages, the evaluation strategies of functional programming
languages are less uniform. For example, MAUDE’s evaluation strategy is highly
customizable and OCaml, a widely used member of the ML language family, uses
eager evaluation by default, but also supports lazy evaluation. Existing com-
plexity analysis techniques for term rewriting support eager evaluation (which is
conventionally called innermost rewriting) and full rewriting where the evalua-
tion strategy is completely unrestricted. Thus, the latter also covers mixtures of
eager and lazy evaluation which may occur in languages like MAUDE and OCaml.
Hence, it is not surprising that, e.g., MAUDE programs can be transformed to
term rewrite systems whose full runtime complexity serves as an upper bound
on the complexity of the original program [117]. However, the power of existing
complexity analysis tools for full rewriting lags behind their impressive results
for innermost rewriting. The technique presented in Chapter 11 significantly
reduces this discrepancy.
Integer rewrite systems (IRSs) are ITRSs without tree-shaped data structures.
As an example, the rule

ack(n,m)→ ack(n− 1, ack(n,m− 1)) [n > 0 ∧m > 0] (1.2)

is a valid IRS rule, as it neither uses data structures like lists in (1.1) nor any
other built-in data types except integers. Hence, IRSs correspond to programs
where all variables range over the integers and thus they are a suitable tar-
get language for translations from real-world programs operating on integers.
Moreover, programs operating on both integers and data structures can be
transformed to IRSs by abstracting data structures to natural numbers using
a suitable size abstraction.
While there are some complexity analysis tools for (unrestricted) IRSs (or
equivalent formalisms) like CoFloCo [48, 50] and PUBS [3], many tools can
only analyze subclasses of IRSs with limited support for procedures: Integer
transition systems (ITSs) essentially only support procedures without return
values (i.e., with return type void) and linear integer transition systems (LITSs)
do not support procedures at all. Thus, (1.2) is not a valid ITS rule, as the
result of the inner ack call is passed to the outer ack call as an argument on
the right-hand side, i.e., the return type of ack is int. In contrast,

fib(n)→ fib(n− 1) + fib(n− 2) [n > 2] (1.3)

is a valid ITS rule, as the result of fib is not passed to any other function. Hence,
here the runtime complexity is independent of fib’s result and thus corresponds
to the complexity of the program

9
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void f i b (n) {
i f (n > 2) {

f i b (n−1);
f i b (n−2);

}
}

where the only function fib has the return type void. However, the non-linear
recursion in (1.3) requires procedure calls. Hence, (1.3) is not a valid LITS rule.
In contrast, the rule

fac(n, r)→ fac(n− 1, r · n) [n > 0]

is a valid LITS rule, as it corresponds to the loop

while (n > 0) {
r = r ∗ n ;
n = n − 1 ;

}

i.e., it corresponds to a program without procedure calls.
In Chapter 5, we show how complexity analysis tools for ITSs can also be used to
analyze programs with non-void procedures, such that all existing complexity
analysis tools for ITSs can also be used to analyze non-tail recursive programs
(note that tail recursive procedures can be inlined, i.e., support for procedures
is mainly required to handle non-tail recursion). Thereby, we restrict ourselves
to eagerly evaluated programs with arithmetic on natural numbers (i.e., IRSs
where all variables implicitly range over N), resulting in the notion of recursive
natural transition systems (RNTSs). Extensions to non-eager evaluation and
full integer arithmetic are left to future work.
As in the case of TRSs, all existing techniques to analyze the worst-case com-
plexity of IRSs are restricted to upper bounds. In Chapter 4, we partially close
this gap by introducing the first technique for the inference of lower bounds for
ITSs.
To summarize, in the long run powerful complexity analysis techniques for
LCTRSs are desirable. The reason is that LCTRSs cover most features of
real-world programming languages. Thus, they allow for natural complexity-
preserving transformations from real-word programs. However, we are not yet
there: The state of the art is essentially restricted to upper bounds for rewriting
with either tree-shaped data or integers, in the latter case often without support
for non-tail recursion. Moreover, the support for non-eager evaluation is limited.
The goal of this thesis is to advance towards powerful complexity analysis
techniques for LCTRSs. To this end, we complement existing techniques for
upper bounds with techniques for the inference of lower bounds. Moreover, we
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partially overcome existing restrictions w.r.t. non-tail recursion and non-eager
evaluation.
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1.3 Contributions and Publications

In this section, I summarize the major contributions of my thesis. Moreover, I
clarify which parts of the thesis were previously published, give an overview on
my publications, and explain how I contributed to these publications.
The first considerable contribution is the (yet unpublished) framework for the
formalization of complexity analysis techniques from Chapter 2. Despite its
simplicity, it is general enough to cover all results presented in this thesis.
Thus, it is an important building block for a homogeneous presentation of the
complexity analysis techniques from Part II and Part III.

1.3.1 Contributions of Chapter 4 and [56]

Chapter 4 introduces the first automatic technique to infer lower bounds on the
worst-case complexity of integer programs. As argued in the beginning of this
chapter, I believe that worst-case lower bounds nicely complement worst-case
upper bounds and have important applications that justify the relevance of
Chapter 4, especially in the context of cybersecurity.
The core of the technique presented in Chapter 4 is an under-approximating
program simplification framework for linear (Section 4.3) and non-linear (Sec-
tion 4.4) ITSs. It eliminates loops using an acceleration technique which esti-
mates the effect of executing loops multiple times. To this end, it uses recurrence
solving and metering functions (Section 4.2), a novel adaption of classical rank-
ing functions. A similar technique is also used to eliminate recursion. Moreover,
our program simplification framework eliminates straight-line code via chaining.
In this way, one eventually obtains a simplified program with trivial control
flow. Lower bounds on the complexity of such simplified programs can then be
computed using the calculus to solve limit problems presented in Section 4.5.
To improve performance and scalability, limit problems can also be encoded
into SMT formulas in many cases, cf. Section 4.6.
A preliminary version of Chapter 4, which was restricted to linear ITSs and did
not contain the SMT encoding from Section 4.6, has been published in [56]. I
designed the overall program simplification framework from [56, Section 4], that
is, the combination of loop acceleration with chaining which allows to transform
complex into simplified programs (cf. Section 4.3). Moreover, I significantly
contributed to the calculus from [56, Section 5] to obtain asymptotic bounds for
simplified programs by generalizing initial ideas that resulted from discussions
among the authors. Finally, I coordinated the implementation of the presented
technique in the tool LoAT, wrote the first version of the paper, and was heavily
involved in the process of polishing it until it was ready for publication.
After the publication of [56], I applied our implementation LoAT to ITSs re-
sulting from an automated transformation of Java programs [51] within the
CAGE project [110]. CAGE was a joint project of our research group at RWTH
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Aachen University with Draper3 and the University of Innsbruck. The goal of
this project was to develop tools and techniques to find and prove the absence of
denial of service and side channel vulnerabilities in large Java programs. Here,
the calculus from Section 4.5 turned out to be a bottleneck for automatically
generated ITSs with many conditions which are redundant or do not influence
the complexity of the ITS. To solve this problem, I designed and implemented
the novel SMT encoding from Section 4.6.
The (not yet implemented) handling of non-linear ITSs (cf. Section 4.4) is also
completely new. However, non-linear ITSs do not fit into the formalism from
[56], where programs are essentially represented as graphs. Thus, to achieve
a homogeneous presentation, I rephrased all techniques and results from [56]
using a rule-based formalism, i.e., another contribution of Chapter 4 is the use
of a more general and more expressive formalism in comparison to [56].

1.3.2 Contributions of Chapter 5 and [103]

The work of Chapter 5 originated from the observation that existing complexity
analysis techniques for integer programs are significantly more modular than
those for term rewriting. For instance, [27] decomposes integer programs into
small pieces which are analyzed independently. Afterwards, size bounds, a
specific form of (often super-linear) invariants, are used to compose the obtained
sub-results. In this way, [27] can successfully analyze programs with super-linear
complexity without generating super-linear ranking functions.
Ranking functions allow to over-approximate how often a certain program
instruction is executed in a program run. Thus, even if an instruction can
be executed quadratically often in a run of the whole program, it may only
be executed linearly often if one just considers a part of the program, i.e.,
linear ranking functions are often sufficient in a modular setting as in [27].
Generating super-linear ranking functions is a hard synthesis problem, whereas
linear ranking functions can often be found efficiently using state-of-the-art
SMT solvers. Thus, a decomposition of the program as in [27] greatly increases
the applicability of the resulting complexity analysis technique.
In contrast, techniques for term rewriting like [15, 105] often have to generate
super-linear ranking functions in order to analyze programs with super-linear
complexity. The reason is that they do not rely on a notion like size bounds
which allows to estimate the effects of program parts. Thus, linear ranking
functions are rarely sufficient for the inference of super-linear bounds. To the
best of my knowledge, the only complexity analysis technique for term rewriting
which allows the inference of super-linear bounds by deducing linear bounds
for program parts is the Dependency Graph Decomposition from [15]. However,
in contrast to techniques like [27], the Dependency Graph Decomposition does
not allow to fully separate individual functions from the rest of the program.
Moreover, the approaches from [86, 87] based on the potential method [120]

3http://www.draper.com/
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would enable a modular complexity analysis for term rewriting. However, they
have not been successfully automated yet.
Consequently, I proposed to abstract term rewrite systems to integer programs
via a size abstraction, which became the first contribution of [103]. In this way,
the modularity of complexity analysis tools for integer programs can also be
exploited for the analysis of term rewrite systems. Although I wrote the first
draft of the corresponding part of [103], its details were mainly worked out by
my co-authors. Thus, the size abstraction from [103, Section 3] is not presented
within this thesis.
However, while term rewriting supports full recursion, many complexity analy-
sis tools for integer programs only support restricted forms of recursion [8, 27,
71, 114] (see Section 1.2 for a more detailed discussion of these restrictions).
Thus, these tools are not applicable to the recursive integer programs resulting
from the transformation presented in [103, Section 3]. To solve this problem, I
proposed the technique presented in Chapter 5, which allows to apply arbitrary
complexity analysis techniques for non-recursive integer programs also to re-
cursive integer programs. To this end, it analyzes blocks of mutually recursive
functions P individually in a bottom-up fashion by first inferring bounds for P’s
runtime and the size of P’s result (cf. Section 5.2) and then eliminating all calls
to P from the analyzed program (cf. Section 5.3). Thereby, we only consider
integer programs where all variables range over N, since the abstraction from
[103, Section 3] does not yield negative values.
Thus, the first major contribution of Chapter 5 is that it allows to lift each com-
plexity analysis tool for non-recursive integer programs to recursive programs,
as it is completely independent of the underlying complexity analysis tool. The
second major contribution of Chapter 5 is its modularity: Every function is an-
alyzed once and only once, independently from the rest of the program. Finally,
just like the size bounds from [27], the size bounds inferred in Chapter 5 are
often super-linear. To achieve this, we use a novel technique which searches for
size bounds by constructing an ITS whose complexity corresponds to the result
of the analyzed function. In this way, we can again exploit the modularity of
techniques like [27] to infer (often super-linear) size bounds by synthesizing
linear ranking functions. Consequently, our technique is particularly suitable
for the analysis of programs with super-linear growth of data. Note that such
programs are challenging for existing tools for the analysis of recursive integer
programs like CoFloCo [48, 50]. The reason is that the inference of super-linear
invariants is complicated and expensive, such that most tools restrict themselves
to linear invariants which are insufficient to track super-linear growth of data.
The technique presented in Chapter 5 was designed in the course of a Bachelor
thesis which I supervised. A preliminary version of Chapter 5 was published
in [103, Section 4]. I coordinated the implementation, wrote the first version
of [103, Section 4] and, together with my co-authors, kept improving the pre-
sentation until it was ready for publication. Moreover, I was in charge of the
proofs.
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Unfortunately, the formalization from [103, Section 4] turned out to be disad-
vantageous for proving the correctness of our approach. Although the technique
seems rather intuitive, the proofs span over 30 pages. Thus, I decided to re-
formalize the technique within this thesis, resulting in the significantly shorter
proofs in Chapter 5. Thus, in comparison to [103], the major contribution
of Chapter 5 is the streamlined formalization, resulting in shorter and more
reliable proofs.
More precisely, I adapted the definition of the rewrite relation from [103] such
that arithmetic expressions are evaluated “on demand”, whereas they were
evaluated eagerly in [103]. Note that this does not affect the complexity of the
considered rewrite systems, as evaluating arithmetic expressions is “for free” in
[103] and Chapter 5. However, it significantly simplifies the proofs, as evaluating
arithmetic (sub-)expressions changes the structure of a term (e.g., “fib(1 + 1)”
becomes “fib(2)”). With the definition from [103], this structural change has to
be taken into account in the proofs whenever they reason about rewrite steps,
which is not required with the alternative definition from Chapter 5.
Moreover, the formalization in Chapter 5 is significantly more modular than
the formalization in [103]. To see this, recall that Chapter 5 describes a bottom-
up technique, which starts with the analysis of auxiliary functions and then
eliminates all calls to these functions. While this elimination was done in a
single step in [103], it is now decomposed into four steps whose correctness is
proven individually.

1.3.3 Contributions of Chapter 8 and [55, Section 4]

Chapter 8 introduces loop detection, one of the first techniques to infer lower
bounds on the worst-case complexity of term rewrite systems automatically.
From a practical point of view, the main contribution of Chapter 8 is the
wide applicability of loop detection: In our experiments (cf. Chapter 12) it
proves linear lower bounds (see Section 8.1) for almost all analyzed examples.
Moreover, exponential lower bounds (see Section 8.2) can be proven in many
cases. In Section 8.4, we also adapt loop detection to innermost rewriting,
which further increases its applicability in practice, as real-world programs are
often evaluated eagerly.
From a theoretical point of view, it is remarkable that the notion of decreas-
ing loops, which is the foundation of loop detection, generalizes the notion of
loops. Searching for loops is one of the most important techniques to prove
non-termination of term rewrite systems. Thus, loop detection can also prove
that the complexity of a term rewrite system is unbounded. Moreover, Sec-
tion 8.3 contains the non-trivial proof that loop detection is not a semi-decision
procedure for the inference of linear lower bounds, even for quite restrictive
classes of term rewrite systems. Note that this question arises naturally due to
the power of loop detection in our experiments. As we are not aware of a suit-
able counterexample, the incompleteness of loop detection is proven indirectly
by showing that the question whether a TRS has at least linear complexity is

15



Chapter 1. Introduction

undecidable.
A preliminary version of Chapter 8 was published in [55, Section 4]. I pro-
posed the notion of decreasing loops for linear lower bounds, their adaption to
exponential lower bounds, and the reduction used in the proof of Section 8.3.
Moreover, I implemented loop detection in our tool AProVE. Finally, I wrote
the first draft of [55, Section 4] including the initial versions of most proofs and,
together with my co-authors, kept revising it until it was ready for publication.
In comparison to [55], Chapter 8 fixes two inadequacies. The proof of [55,
Lemma 53] used the incorrect assumption that the number of variables in tσ

is bounded by the number of variables in t if t is a linear term and σ is a
substitution which is used to narrow t with a linear term rewrite system R. A
minimal counterexample to this assumption is

t = f(x) and R = {f(c(y, z)) −→ a},

where f(x) can be narrowed to a using the substitution σ = {x/c(y, z)}. Clearly,
the number of variables in tσ = f(c(y, z)) exceeds the number of variables in t =
f(x). This issue is fixed in the proof of the corresponding Lemma 8.18. Moreover,
Theorem 8.12 revises [55, Theorem 37], where we stated that the existence of
d compatible decreasing loops implies that the complexity of the term rewrite
system is in Ω(dn). While it is correct to deduce that the complexity of the
term rewrite system is at least exponential (i.e., it is in Ω(cn) for some c > 0),
we cannot infer the base of the exponential function.
The second significant contribution of Chapter 8 in comparison to [55] is the
adaption of loop detection to innermost relative rewriting. The adaption of
loop detection to innermost rewriting from [55, Appendix A] does not consider
relative rules. However, the adaption to relative rewriting is non-trivial, since
the existence of an innermost decreasing loop as defined in [55, Appendix A]
only implies a linear lower bound if the relative part of the term rewrite system
terminates.

1.3.4 Contributions of Chapter 9, [54], and [55, Section 3]

After the loop detection technique from Chapter 8, Chapter 9 introduces the
second technique for the inference of worst-case lower bounds for term rewrite
systems, the so-called induction technique. The most important contribution
of the induction technique is that it is the first (and currently only) technique
which is able to infer super-linear polynomial worst-case lower bounds for term
rewrite systems. Hence, since linear runtime is often insufficient to enable denial-
of-service attacks, it is especially valuable for the detection of denial-of-service
vulnerabilities.
To infer (possibly super-linear or even exponential) lower bounds, the induction
technique relies on equational rewriting and rewrite lemmas, which allows us to
represent possibly infinite families of rewrite sequences concisely, cf. Section 9.1.
Such families of rewrite sequences are suitable to witness lower bounds on the
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worst-case complexity. The core of the induction technique consists of a heuristic
to speculate likely families of rewrite sequences (Section 9.2) and a technique
to prove their validity by induction afterwards (Section 9.3). By inspecting
the structure of the resulting inductive proof, we can deduce a lower bound on
the complexity of the considered family of rewrite sequences (Section 9.4). By
taking the size of the start terms of the rewrite sequences into account, this
also yields a lower bound on the runtime of the analyzed TRS (Section 9.5).
Section 9.6 shows how to prove lower bounds if we only have partial information
about the considered family of rewrite sequence by using so-called indefinite
lemmas. More precisely, indefinite lemmas represent rewrite sequences whose
result is unknown. Nevertheless, they give rise to non-trivial lower bounds in
many cases.
To improve the applicability of the induction technique, Section 9.7 introduces
the, to the best of my knowledge, first under-approximating argument filtering
technique for term rewrite systems. Similar techniques have long been used for
termination analysis and for the inference of upper complexity bounds, where
they are used in an over-approximating setting (see, e.g., [38, 68, 105]). Hence,
existing techniques are usually unsound in an under-approximating setting, i.e.,
they cannot be used if one is interested in lower instead of upper bounds.
Finally, Section 9.8 shows how to adapt the induction technique for the analysis
of innermost instead of full rewriting.
Preliminary versions of Chapter 9 were published in [54] and [55, Section 3],
where [54] focused on innermost rewriting and [55] focused on full rewriting.
While the underlying idea of proving the existence of families of rewrite se-
quences by induction in order to infer lower runtime bounds dates back before
my time as a PhD student (as it has, e.g., been illustrated informally in [80]),
I conceptualized the presented technique to speculate potentially valid families
of rewrite sequences (Section 9.2). Moreover, the techniques to deduce lower
bounds on the costs of rewrite lemmas (Section 9.4) and whole term rewrite
systems (Section 9.5) have been worked out by me. I also designed the under-
approximating argument filtering technique from Section 9.7 and contributed
to the conception of the technique presented in Section 9.6, which allows us to
reason about families of rewrite sequences without knowing their result.
Furthermore, I wrote the first version of both [54] and [55, Section 3] and
constantly contributed to both papers until their publication. Finally, I imple-
mented the induction technique in our tool AProVE.
In comparison to [54] and [55, Section 3], Chapter 9 introduces a notion of
complexity for equational rewriting. Then the first step of the analysis is to
transform the standard term rewrite system that needs to be analyzed into
an equational term rewrite system. Hence, all major theorems (as well as
their proofs) can entirely focus on equational rewriting. While equational
rewriting has also been used in [54, 55], there was no corresponding notion
of complexity. Thus, many theorems in [54, 55] had to link statements about
equational rewriting back to standard term rewriting to express complexity-
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related properties. Hence, in comparison to [54, 55], the formalization as well
as the proofs of Chapter 9 are streamlined and simplified.
Moreover, the techniques presented in Section 9.6 and Section 9.7 were missing
in [55] and hence they are adapted to full rewriting for the first time within
this thesis. Although this adaption is not very challenging, it is nevertheless
interesting as the resulting technique from Section 9.6 is orthogonal to the
corresponding technique for innermost rewriting from [54]. While [54] had
to impose severe restrictions on the technique to prove rewrite lemmas by
induction in the presence of indefinite lemmas, these restrictions are not needed
in Section 9.6. In contrast, Section 9.6 requires that the analyzed system is
left-linear, which is only a mild restriction in practice.
Another contribution of Chapter 9 in comparison to [54, 55] is Theorem 9.31,
which is stronger than the corresponding Corollary 25 from [55] resp. Theorem
14 from [54]. The difference is that Theorem 9.31 yields a concrete, potentially
multivariate lower bound which is asymptotically correct. In contrast [55, Corol-
lary 25] and [54, Theorem 14] just yield a (univariate) asymptotic complexity
class. However, to implement the induction technique, a concrete lower bound
is required.
Finally, Algorithm 4 is significantly more detailed than the corresponding Al-
gorithm 13 from [55].

1.3.5 Contributions of Chapter 10

The main contribution of Chapter 10, which is completely unpublished, is
the proof that the question whether the runtime complexity of a term rewrite
system is constant is semi-decidable for full (Section 10.1) as well as innermost
(Section 10.2) rewriting. The resulting semi-decision procedure exploits that
termination of a restricted form of narrowing is semi-decidable.
Chapter 10 complements the related result from Section 8.3 that the question
whether the runtime complexity of a term rewrite system is at least linear is
undecidable. To prove semi-decidability, some results from Section 8.3 have
to be generalized from the restricted class of term rewrite systems that is
considered in Section 8.3 to arbitrary term rewrite systems. Since the term
rewrite systems considered in Section 8.3 are restricted to tail recursion, this
adaption is non-trivial.
From a practical point of view, Chapter 10 is of interest for two reasons. First,
it is able to prove constant upper bounds for term rewrite systems where the
leading complexity analysis tools failed to do so up to now, cf. Chapter 12.
Second, it has interesting applications in practice, as the runtime of non-trivial
algorithms is usually not constant. Hence, the technique presented in Chap-
ter 10 can be used to identify common bugs that result in constant runtime
like, e.g., unsatisfiable loop conditions.
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1.3.6 Contributions of Chapter 11 and [53]

Chapter 11 introduces a strategy switching technique to prove that the innermost
runtime complexity of a term rewrite system coincides with its full runtime
complexity, i.e., that eager evaluation is the “worst” possible reduction strategy
for a given TRS. In this way, strategy switching allows us to use all existing and
future techniques for the inference of upper bounds on the innermost runtime
complexity of TRSs to also analyze their full runtime complexity. This results
in a significant gain in power for state-of-the-art complexity analysis tools, since
their support for innermost rewriting is much more sophisticated than for full
rewriting as discussed in detail at the beginning of Chapter 11. Hence, strategy
switching has important applications regarding the analysis of programs with
non-eager evaluation strategies, such as MAUDE programs [117].
Dual to its applications for the inference of upper bounds, strategy switching
makes techniques for the inference of lower bounds for full rewriting available
for the analysis of innermost rewriting.
Chapter 11 builds upon a result from [124], which essentially states that in-
nermost rewriting is the least efficient evaluation strategy as long as a TRS
does not duplicate redexes, i.e., subterms whose evaluation is not yet finished,
cf. Section 11.1. To exploit this result, Section 11.2 presents a novel technique
to prove that redexes will never be duplicated. Thereby, only rewrite sequences
that correspond to the evaluation of a single function are taken into account
(i.e., rewrite sequences starting with so-called basic terms). This is in line with
the established definition of runtime complexity for term rewrite systems.
The core idea of the presented technique is to approximate all terms that might
lead to duplication as well as all terms that might contain nested redexes. If
those approximations do not “overlap”, then redexes cannot be duplicated,
which proves that innermost rewriting is always the worst evaluation strategy
and hence innermost and full runtime complexity coincide.
The technique presented in Chapter 11 has previously been published in [53].
There, we also extended the technique to handle so-called non-constructor
systems. As this class of term rewrite systems is irrelevant in the context of
program verification, this extension is not presented in this thesis. I contributed
to [53] by developing the presented approximations, writing the first draft of the
paper including all proofs, and implementing the presented technique. Moreover,
I was heavily involved in the process of polishing the paper until its publication.
The evaluation of our strategy switching technique in Chapter 12 significantly
extends the experimental evaluation from [53], as it also shows the effect of
combining it with techniques for the inference of lower bounds, whereas [53]
focused on upper bounds.

1.3.7 Further Publications

Apart from the publications mentioned in the previous sections, I contributed
to several other papers during my time as a PhD student.
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• The tool paper [64] and its extended version [62] present AProVE, one
of the leading fully automatic termination and complexity analysis tools.
Besides being one of the main developers of AProVE, my main contribu-
tion to these papers was the implementation of significant extensions of
AProVE’s Eclipse plugin. Note that AProVE’s Eclipse plugin was one of
the main novelties presented in [62, 64].

• The paper [118] and its extended version [119] present a technique to
prove memory safety and termination of C programs. Besides minor
contributions to the implementation and proofreading, I was in charge of
the experimental evaluation of [118].

• In [75] and its extended version [76], we extended our technique from
[118, 119] in order to prove safety, termination, and upper complexity
bounds for C programs with bitvector arithmetic (whereas we assumed
ints to be mathematical integers in [118, 119]). Besides proofreading, I
substantially contributed to the conception and implementation of the
complexity analysis technique presented in [76].

• In [51], we presented a technique to infer upper bounds on the complexity
of Java programs. I was the main author of this paper. As such, I was in
charge of the development and implementation of the presented technique.
Moreover, I wrote the first version of the paper and kept contributing to
it until it was ready for publication.
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The goal of all techniques presented in this thesis is to compute symbolic bounds
on the complexity of rewrite systems. More precisely, our goal is to derive a
mathematical expression which is an upper or lower bound on the system’s
worst-case complexity. Section 1.4.1 gives a rough overview of the large field
of symbolic bounds. Later on, we will give more details about many of the
mentioned techniques subsequent to related contributions of this thesis. Sec-
tion 1.4.2 discusses other fields which are related, but orthogonal to symbolic
bounds.

1.4.1 Symbolic Bounds

Techniques to analyze the complexity of programs automatically have been
investigated since the 1970s [128]. As a result, there are many techniques to
infer upper bounds on the worst-case complexity of various kinds of programs.
Apart from that, there are few techniques to infer lower bounds on the best-
case complexity. Regarding lower bounds on the worst-case complexity, the
techniques presented in this thesis are the first of their kind to the best of my
knowledge.
Note that techniques to infer lower bounds on the best-case complexity differ
fundamentally from techniques for the inference of worst-case lower bounds. To
deduce best-case lower bounds, one has to prove that a certain bound holds
for every program run. Thus, as in the case of worst-case upper bounds, over-
approximating techniques are used to ensure that the proven bound covers all
program runs, i.e., even though such techniques under-approximate the runtime
of the program, they over-approximate the set of all program runs.
In contrast, techniques to infer lower bounds on the worst-case complexity have
to identify families of inputs (i.e., witnesses) that result in expensive program
runs. Thus, for the inference of worst-case lower bounds, over-approximations
are usually unsound, since one has to ensure that the witness of the proven
lower bound corresponds to “real” program runs. Thus, under-approximating
techniques have to be used in order to infer lower bounds on the worst-case
complexity.
Most existing complexity analysis techniques either analyze

• programs operating on integers,

• term rewrite systems resp. first-order functional programs, or

• real-world programming languages.

Programs Operating on Integers Inferring upper bounds on the complex-
ity of integer programs is a very active field of research, as witnessed by a large
number of both tools and publications [3, 8, 9, 21, 27, 34, 35, 48, 50, 71, 72,
114]. One reason is that programs written in real-world programming languages
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can be abstracted to integer programs in a natural way [5, 7, 44, 45, 51, 76, 115,
119]. We will discuss the relationship to existing techniques for the inference
of upper bounds for integer programs in further detail in Sections 4.7 and 5.4.
In contrast, there is little work on the inference of lower bounds on the best-
case complexity of integer programs. The tools PUBS [3] and CoFloCo [48] can
infer lower bounds on the best-case complexity of cost relations. Cost relations
extend recurrence relations such that, e.g., non-determinism can be modeled.
Moreover, [10] briefly mentions that their technique could also be adapted to
infer best-case lower bounds instead of worst-case upper bounds for abstract
cost rules, i.e., integer procedures with (possibly multiple) outputs. Since these
techniques are modifications of the corresponding techniques for the inference
of worst-case upper bounds and, as mentioned at the beginning of this section,
incomparable to the techniques for the inference of worst-case lower bounds
presented in this thesis, we will not discuss them in detail.

Term Rewrite Systems Here, the situation is even more one-sided than in
the case of integer programs: There are numerous techniques for the inference
of worst-case upper bounds [13, 15, 79, 84, 87, 104, 105, 127, 131], but no
techniques for the inference of lower bounds are available. Remarkably, existing
complexity analysis techniques support two notions of “complexity” for term
rewrite systems. While the derivational complexity [15, 104, 127, 131] of term
rewrite systems is of interest in the context of equational reasoning, runtime
complexity [13, 15, 79, 87, 105] corresponds to the usual notion of complexity
for programs. Thus, in this thesis, we focus on runtime complexity. However,
since the runtime complexity of a term rewrite system is always a lower bound
on its derivational complexity, the presented techniques for worst-case lower
bounds can directly be used to analyze derivational complexity as well.
While derivational and runtime complexity differ w.r.t. the allowed start terms,
one also obtains different notions of complexity for term rewriting by distin-
guishing different evaluation strategies. In the past, innermost rewriting [13, 15,
79, 87, 105] (i.e., rewriting with an eager evaluation strategy) and full rewriting
[15, 79, 104, 127, 131] (i.e., rewriting with a completely unrestricted evaluation
strategy) have been studied. All techniques presented in the current thesis
apply to both, innermost and full rewriting.

Real-World Programming Languages From a practical point of view,
techniques to analyze the complexity of real programming languages are cer-
tainly the most interesting ones. However, these techniques rarely analyze the
complexity of programs directly. Instead, as mentioned in Chapter 1, they
transform programs into simpler formalisms like integer programs [7, 51, 76],
term rewrite systems [65], or combinations thereof [101].
Relying on powerful techniques for automated termination analysis of rewrite
systems (e.g., [26, 62, 78, 96]), similar transformations have successfully been
used to prove termination of programs written in real-world languages for many
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years [5, 28, 29, 44, 45, 63, 65, 75, 107, 115, 119]. In comparison, complexity-
preserving transformations from real-world languages to rewrite systems haven
seen less attention. Clearly, the appeal of such transformational approaches
stands and falls with the power of the available complexity analysis tools for
rewriting. Thus, we hope that the techniques presented in this thesis will inspire
further complexity analysis techniques for real-world programs on the long run.

1.4.2 Related Fields

The two other most closely related fields of research are concerned with solving
recurrence relations and predicting the worst-case execution time of programs.

Recurrence Relations Recurrence relations are of the form x(n) = . . . where
the right-hand side of the equation again contains sub-expressions x(...). In this
way, together with suitable initial conditions, recurrence relations recursively
define a sequence x(0), x(1), . . . From a different point of view, they can be seen
as simple numeric “programs” to compute x(n) recursively and thus they are
related to integer programs resp. integer rewrite systems. Like integer rewrite
systems, they can be used to model the complexity of programs in a natural way
in many cases. For example, the number of loop iterations required to traverse
a non-empty list of length n is 1 + x(n−1), resulting in the recurrence relation
x(n) = 1+x(n−1) with the initial condition x(0) = 0 (for traversing an empty list).
Solving recurrence relations, i.e., finding a closed form for x(n), is supported by
highly specialized solvers like PURRS [18] and many computer algebra systems
like Maple [74] or Mathematica [130]. However, these tools usually aim to find
exact solutions. In contrast, since describing the exact runtime of a program
in terms of a closed-form expression is infeasible in most cases, techniques for
the computation of symbolic bounds sacrifice exactness and compute approx-
imations instead. Moreover, there is little tool support for multi-dimensional
recurrence relations of the form x(n1,...,nk) = . . . However, since many variables
may influence the complexity of programs, multi-dimensional recurrence rela-
tions naturally arise if one tries to express the complexity of a program in terms
of recurrence relations. Finally, recurrence relations do not offer features like
case analyses or non-determinism, which are heavily exploited by complexity-
preserving transformations from real-word programming languages to rewrite
systems like [7, 51, 76].

Worst-Case Execution Time Tools that tackle that Worst-Case Execu-
tion Time (WCET) problem [129] try to estimate the runtime of programs in
(milli-)seconds. To this end, the underlying execution platform has to be taken
into account, i.e., many low-level aspects like the architecture of the processor
have to be modeled in detail, whereas tools for symbolic bound computation
use simple, idealized cost models. On the other hand, WCET tools usually re-
quire user-provided annotations that describe the number of iterations of loops,
whereas tools for symbolic bounds work fully automatically. Thus, the research
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on symbolic bounds and WCET is largely orthogonal and joining techniques
from both fields is subject of future work.
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Preliminaries

In this chapter, we first introduce terms and various related concepts in Sec-
tion 2.1. This lays the foundation for the definition of our notions of rewrite
systems in Part II and Part III. Afterwards, we introduce the framework which
will be used to formalize complexity analysis techniques throughout this thesis
in Section 2.2. It is based on complexity problems (cf. Definition 2.16), which
offer a flexible way to describe various notions of complexity for different models
of computation. All complexity analysis techniques presented later on either
yield a bound for a complexity problem directly, or they transform one com-
plexity problem into another one using processors (cf. Definition 2.22). The
goal of such a processor is to obtain a new complexity problem which is in some
sense simpler, smaller, or easier to analyze than the original one.
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A signature Σ is a (possibly infinite) set of function symbols where each function
symbol f ∈ Σ has a fixed arity arΣ(f) = n. For each n ∈ N, Σn ⊆ Σ just
contains the function symbols from Σ whose arity is n. A signature Σ and a
set of variables V allow us to build terms.

Definition 2.1 (Terms). Given a signature Σ and a set of variables V, the
set T (Σ,V) of all terms over Σ and V is the smallest set containing

(1) x if x ∈ V and

(2) f(t1, . . . , tn) if f ∈ Σn and ti ∈ T (Σ,V) for each i ∈ {1, . . . , n}.

T (Σ) = T (Σ,∅) is the set of all ground terms over Σ.
V(t) is the set of all variables and Σ(t) is the set of all function symbols that
occur in t. We write #x(t) to denote the number of occurrences of x ∈ V in
t.
A term t is linear if #x(t) ≤ 1 for all x ∈ V.

We lift the notations V(t) and Σ(t) to sets of terms in the obvious way (so we
have, e.g., V(T ) =

⋃
t∈T V(t) for each T ⊆ T (Σ,V)).

To avoid clumsy notations like f(t1, . . . , tn), we sometimes use row vectors.
To represent row vectors like (t1, . . . , tn), we use bold symbols like t and we
refer to their length as len(t) = n. For n-ary functions or function symbols
f , we identify f(t) and f(t1, . . . , tn). Unary functions g are applied to vectors
componentwise, i.e., g(t) = (g(t1), . . . , g(tn)). Similarly, we extend relations ◦
to vectors componentwise, i.e., we have t◦s if len(t) = len(s) and t|i ◦s|i for all
i ∈ {1, . . . , len(t)} where t|i is the ith element of t. The vector resulting from
t by replacing its ith element with s is t[s]i. We sometimes use vectors as sets,
i.e., we write t ∈ t, t ⊆ T , etc. Finally, we define

∑
t =

∑len(t)
i=1 t|i.

Example 2.2 (Signatures and Terms). Σ = {cons, nil, succ, zero} is the
signature which will be used to represent natural number and lists as terms
throughout this thesis. The natural number n is represented by the term
succn(zero), the empty list is represented by nil, and the list with head n and
tail xs ∈ V is represented by cons(succn(zero), xs).

Here and throughout this thesis, fn(x) denotes the n-fold application of f , i.e.,
fn(x) = f(. . . f(︸ ︷︷ ︸

n×

x) . . .).

To reason about terms, it is often useful to talk about subterms in a concise way.
To this end, the notion of positions can be used to address subterms directly.
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Definition 2.3 (Positions and Subterms). Let t ∈ T (Σ,V). Then the set
pos(t) ⊆ N∗ of t’s positions is defined inductively as follows:

pos(t) =
{
ε if t ∈ V
{ε} ∪ {i.π | i ∈ {1, . . . , n}, π ∈ pos(ti)} if t = f(t1, . . . , tn)

We write π ≤ π′ (resp. π < π′) if π is a (proper) prefix of π′. If π 6≤ π′ and
π′ 6≤ π, then π and π′ are independent (π‖π′). For each π ∈ pos(t), the term
t|π is defined by:

t|π =
{
t if π = ε

ti|π′ if π = i.π′ and t = f(t1, . . . , tn)

Furthermore, t[s]π is the term that results from t by replacing t|π with s,
i.e.:

t[s]π =
{
s if π = ε

f(t1, . . . , ti[s]π′ , . . . , tn) if π = i.π′ and t = f(t1, . . . , tn)

A term s ∈ T (Σ,V) is a subterm of t (t D s) if there is a position π ∈ pos(t)
such that t|π = s. We also use the notation t Dπ s. It is a proper subterm of
t (t . s) if π 6= ε.

Example 2.4. Let t = cons(zero, cons(succ(zero), nil)). The positions of t
are pos(t) = {ε, 1, 2, 2.1, 2.2, 2.1.1}. We have t|2.1 = succ(zero) and thus
t . succ(zero). Moreover, we have t[zero]2.1 = cons(zero, cons(zero, nil)).

Substitutions allow us to instantiate variables in terms.

Definition 2.5 (Substitution). Let Σ be a signature and let V be a set of
variables. A substitution is a function σ : V → T (Σ,V).
The domain of σ is dom(σ) = {x | σ(x) 6= x}. We lift substitutions to
terms homomorphically, i.e., we define σ(f(t)) = f(σ(t)). Substitutions with
finite domain can be denoted as finite sets of pairs {x1/σ(x1), . . . , xn/σ(xn)}.
We write {x/t} for the substitution which replaces x|i with t|i for each
1 ≤ i ≤ len(x) = len(t). As usual, we use substitutions in postfix notation,
i.e., we define tσ = σ(t). Moreover, σ � σ′ denotes the composition of σ and
σ′, i.e., x(σ � σ′) = (xσ)σ′. Finally, for every V ⊆ V, the restriction of σ to
V is σ|V with xσ|V = xσ if x ∈ V and xσ|V = x, otherwise.

Note that substitution composition is defined in a different way than function
composition: While f ◦g(x) = f(g(x)) holds for standard function composition,
we have σ �θ(x) = θ(σ(x)) for substitution composition. Hence, we use the non-
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standard symbol � instead of ◦ for substitution composition to avoid confusion.
Moreover, the meaning of “domain” in the context of substitutions is non-
standard. Thus, for functions f : S → T , we refer to S as f ’s domain of
definition (instead of just “f ’s domain”). As usual, T is called the codomain of
f and the image of f is img(f) = {f(x) | x ∈ S}.
Lastly, while the restriction f |X : X → Z of a function f : Y → Z (where
X ⊆ Y ) restricts f ’s domain of definition, the restriction σ|V of a substitution
restricts σ’s domain, i.e., yσ|V = y is well-defined if y ∈ V \ V , whereas f |X(y)
is undefined if y ∈ Y \X.

Example 2.6. Consider the two substitutions σ1 = {x/succ(x)} and σ2 =
{x/zero, xs/nil}. Applying σ1 and σ2 to the term succ(x) yields succ(x)σ1 =
succ(succ(x)) and succ(x)σ2 = succ(zero). The composition σ1 �σ2 of σ1 and
σ2 is {x/succ(zero), xs/nil}.

Note that substitution composition is associative, since we have

t((σ � σ′) � σ′′) = (t(σ � σ′))σ′′ = ((tσ)σ′)σ′′ = (tσ)(σ′ � σ′′) = t(σ � (σ′ � σ′′)).

Substitutions are the foundation of “pattern matching”, a well-known concept
from, e.g., functional programming. Matching is related to unification, which
is, e.g., used in logic programming.

Definition 2.7 (Matching and Unification). Let s, t ∈ T (Σ,V). We say that
s matches t if there is a substitution σ such that sσ = t. Then σ is called
the matcher of s and t.
We say that s and t unify if there is a substitution σ such that sσ = tσ.
Then σ is a unifier of s and t. If for every unifier θ of s and t, there is a
substitution µ such that θ = σ � µ, then σ is the most general unifier of s
and t (written mgu(s, t) = σ).

It is well known that mgu(s, t) exists and is unique up to variable renaming for
unifiable terms s and t.

Example 2.8. The term s = cons(x, nil) matches t = cons(zero, nil), since
s{x/zero} = t. While s does not match t′ = cons(y, ys), s and t′ unify
since we have, e.g., sσ = t′σ for σ = {y/x, ys/nil}. The substitution θ =
{x/zero, y/zero, ys/nil} is also a unifier of s and t′ and we have θ = σ �µ with
µ = {x/zero, y/zero}. In fact, such a substitution µ exists for every unifier
θ of s and t′, since σ is the most general unifier of s and t′, i.e., we have
mgu(s, t′) = σ.

Contexts are terms with a single occurrence of a “placeholder” �. They are
useful to express that a term has a “dedicated” subterm without specifying its
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position explicitly.

Definition 2.9. A context C ∈ T (Σ ∪ {�},V) is a term such that C|π = �
for one and only one π ∈ pos(C). We define C[t] = C[t]π for all terms
t. W.l.o.g., we always assume that signatures do not contain the function
symbol �.

Thus, C = cons(�, xs) and D = cons(zero,�) are contexts and we have
C[zero] = D[xs] = cons(zero, xs).
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In this section, we introduce the complexity analysis framework which will be
used throughout this thesis. The goal of this framework is to represent different

(1) models of computation (like integer and term rewriting),

(2) notions of complexity, and

(3) complexity analysis techniques

in a uniform way.
To achieve (1), observe that essentially every model of computation relies on
some notion of states and defines how to transform the current state into a new
one using some kind of transition relation. Thus, given a state space S, binary
relations on S are suitable to solve (1). However, to achieve (2), it is important
to distinguish “cheap” and “expensive” calculation steps. For example, in a
rewrite system which models the memory consumption of a Java program, steps
that correspond to arithmetic operations in the original program are most likely
“for free”, whereas steps corresponding to the creation of new objects are costly.
Thus, instead of binary relations, we use ternary relations where the additional
component represents the costs of calculation steps.

Definition 2.10 (Weighted Relation). Let S be a set. We call−→ ⊆ S×R×S
a weighted relation on S. We write s0

k−→ s1 if (s0,k, s1) ∈ −→. Furthermore,
we write s0

k−→n sn if s0
k1−−→ . . .

kn−−→ sn and k =
∑n
i=1 ki. Finally, we write

s0
k−→∗ sn if s0

k−→n sn for some n ∈ N and s0
k−→+ sn if s0

k−→n sn for some
n ∈ N with n > 0. We sometimes omit the costs k if they are irrelevant.

Example 2.11. Let S = {a, b, c, d, e}. An example for a weighted relation
on S is −→ with:

a 1−→ b a 0−→ c b 1−→ d c 1−→ e

Now the complexity or derivation height of a state s ∈ S is simply the maximal
k such that s k−→∗ t for some state t.

Definition 2.12 (Derivation Height [81]). Let S be a set and let −→ be a
weighted relation on S. The derivation height dh−→ : S → R ∪ {ω} of −→ is
defined as

dh−→(s) = sup{k ∈ R | t ∈ S, s k−→∗ t}.

Since −→∗ also permits “empty” program runs1, we always have dh−→(s) ≥ 0.

1Throughout this thesis, terms like “program run”, “evaluation sequence”, “rewrite se-
quence”, or just “sequence” are used as synonyms for (potentially infinite) chains s0 −→ s1 −→
. . . w.r.t. a weighted relation −→.
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Example 2.13. For the weighted relation from Example 2.11, we have
dh−→(a) = 2 since we have a 1−→ b 1−→ d. Moreover, we have dh−→(b) =
dh−→(c) = 1 and dh−→(d) = dh−→(e) = 0.

If the analyzed program is terminating (i.e., there is no infinite sequence s0 −→
s1 −→ . . .) and all calculation steps have non-negative costs, then there is always
a cost-maximal sequence s k−→∗ t such that t is a “final state”, i.e., there is no
way to evaluate t any further. Formally, the concept of “final states” is captured
by the notion of normal forms.

Definition 2.14 (Normal Form). Let −→ be a weighted relation on S and
let s ∈ S. If there is no t ∈ S such that s −→ t, then s is called a normal form
w.r.t. −→. If we have t −→∗ s and s is a normal form, then s is a normal form
of t. If t has a unique normal form s, then we write t↓ = s.

Example 2.15. In Example 2.11, the only normal forms are d and e and
we have b↓ = d.

Besides assigning costs to calculation steps, we need two more ingredients to
solve (2). First, we need to fix a set of initial states I. In this way, we can express
that we are only interested in the cost of an evaluation s k−→∗ t if s ∈ I. If, for
example, the analyzed rewrite system results from a Java program, this allows
us to express that we are only interested in program runs starting with the main
method. Second, we need to fix a size measure for initial states. The reason is
that any statement about the complexity of a program is meaningless without
specifying the underlying size measure. For example, traversing all nodes of a
complete binary tree is linear in the number of nodes, but exponential in the
height of the tree. Complexity problems combine all the ingredients to solve (1)
and (2) and thus they are the foundation of our complexity analysis framework.

Definition 2.16 (Complexity Problem). Given a set S, a complexity problem
over S is a tuple cp = (I,−→, ‖·‖) where I ⊆ S, −→ is a weighted relation on
S, and ‖·‖ : I → N. S is the state space, I is the set of initial states, → is
the transition relation, and ‖·‖ is the size measure of cp. CP denotes the set
of all complexity problems.

Example 2.17. Continuing Example 2.11, cp = ({a, b},−→, ‖·‖) with ‖a‖ =
3 and ‖b‖ = 1 is a complexity problem.

It remains to define the complexity of a complexity problem. While the deriva-
tion height (cf. Definition 2.12) already characterizes the complexity w.r.t. a
specific start state, this notion of complexity is usually too precise to allow for
concise and intuitive bounds. Thus, the use of techniques to approximate the
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derivation height dh is limited. Hence, we abstract over dh by defining the
runtime complexity of a complexity problem. Its only argument is an upper
bound on the size of the initial state which is mapped to the cost of the most
expensive program run whose start state complies with this bound.

Definition 2.18 (Runtime Complexity). Let cp = (I,−→, ‖·‖) be a com-
plexity problem. The runtime complexity rccp : N → R ∪ {ω} is defined
as

rccp(n) = sup{dh−→(s) | s ∈ I, ‖s‖ ≤ n}.

Obviously, rccp is not computable if −→ corresponds to the transition relation of
a Turing complete model of computation. Thus, our goal is to compute bounds
which are as precise as possible.

Example 2.19. For the complexity problem cp from Example 2.17, we have
rccp(1) = rccp(2) = 1 since the only initial state whose size is bounded by 1
or 2 is b and the derivation height of b is 1, cf. Example 2.13. For all n > 2,
we have rccp(n) = 2 since we have ‖a‖ ≤ n and dh−→(a) = 2.

However, in many cases even meaningful bounds on rc are hard to express con-
cisely. As an example, consider the HashMap implementation in the standard
library of Java 8 [97]. Usually, the buckets of the hashtable are organized as
lists and thus a lookup has linear worst-case complexity w.r.t. the size of the
largest bucket. However, overpopulated buckets are transformed to trees, such
that lookups become logarithmic. So assume that −→ mimics a lookup in a
hashtable, ‖·‖ measures hashtables by the size of the largest bucket, and I just
contains states that comply with HashMap’s class invariant that small buckets
are organized as lists, whereas large buckets are organized as trees. Then upper
bounds for rccp are either (at least) linear and thus imprecise, or they explicitly
distinguish the cases that the hashtable is “small” and that it is “large enough”.
In contrast, asymptotic bounds on rc can be expressed concisely in most cases.

Definition 2.20 (Asymptotic Bounds). Let f, g : N→ R.
We say that g is an asymptotic lower bound for f (f(n) ∈ Ω(g(n))) if there
is an m > 0 and an n0 ∈ N such that f(n) ≥ m · g(n) holds for all n ≥ n0.
We say that g is an asymptotic upper bound for f (f(n) ∈ O(g(n))) if there
is an m > 0 and an n0 ∈ N such that f(n) ≤ m · g(n) holds for all n ≥ n0.
We define f(n) ∈ Θ(g(n)) if f(n) ∈ Ω(g(n)) and f(n) ∈ O(g(n)).

While we use Knuth’s definition of Ω [92], there is an alternative definition
by Hardy and Littlewood [73]. According to their definition, we have f(n) ∈
Ω(g(n)) if there is an m > 0 such that for each n0 ∈ N there is an n ≥ n0
with f(n) ≥ m · g(n). So it requires that for each n0 there is some larger
value n where f exceeds its lower bound. In contrast, Knuth’s variant requires
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that f always exceeds its lower bound from some n0 onwards. Thus, Knuth’s
variant is the stronger one, i.e., whenever we have f(n) ∈ Ω(g(n)) in the sense
of Definition 2.20, then we also have f(n) ∈ Ω(g(n)) in the sense of Hardy and
Littlewood. Thus, the asymptotic lower bounds computed by the techniques
presented in this thesis are valid w.r.t. both definitions.

Example 2.21. Continuing Example 2.19, we clearly have rccp(n) ∈ Θ(1)
since we have rccp(n) = 2 for all n ≥ n0 = 3, i.e., the runtime complexity of
cp is constant.
Now consider the complexity problem

cp′ = (N, {n n−→ n− 1 | n ∈ N}, id)

(where id denotes the identity function), i.e., we have

n n−→ n− 1 n−1−−−→ . . . 1−→ 0

for each n ∈ N. Thus, we have

rccp′(n) =
n∑
i=1

i = 1
2 · n

2 + 1
2 · n.

So we have rccp′(n) ∈ O(n2) since rccp′(n) ≤ n2 for all n ∈ N. Moreover, we
have rccp′(n) ∈ Ω(n2) since rccp′(n) ≥ 1

2 · n
2, i.e., we have rccp′(n) ∈ Θ(n2).

While complexity problems satisfy our requirements (1) and (2), we still need a
solution for (3), i.e., we need a “tool” to formalize complexity analysis techniques
for complexity problems. To this end, we use processors that map a given
complexity problem to a new one. Depending on the intention of a processor,
it can be (asymptotically) sound for lower bounds, upper bounds, or both.

Definition 2.22 (Processor). A function proc : CP → CP ∪ {⊥} is called
a processor. We say that proc is applicable to a complexity problem cp if
proc(cp) 6= ⊥.
A processor is sound for upper bounds (resp. lower bounds) if proc(cp) 6= ⊥
implies rcproc(cp) ≥ rccp (resp. rcproc(cp) ≤ rccp). It is equivalent if it is sound
for upper and lower bounds. It is asymptotically sound for upper bounds
(resp. lower bounds) if proc(cp) 6= ⊥ implies rccp(n) ∈ O(rcproc(cp)(n))
(resp. rccp(n) ∈ Ω(rcproc(cp)(n))). It is asymptotically equivalent if it is
asymptotically sound for upper and lower bounds.

Here, functions are compared point-wise, i.e., we have rcproc(cp) ≥ rccp if
rcproc(cp)(n) ≥ rccp(n) for all n ∈ N. When defining processors, we only specify
their result for certain inputs and implicitly assume the result ⊥ for all others.
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Example 2.23. We continue Example 2.21. If

proc(cp′) = (N, {n n2−−→ 0 | n ∈ N}, id),

then proc is sound for upper bounds since we have

rcproc(cp′)(n) = n2 ≥ 1
2 · n

2 + 1
2 · n = rccp′(n).

In contrast, proc is not sound for lower bounds, since we have

rcproc(cp′)(2) = 4 6≤ 3 = rccp′(2).

It is, however, asymptotically sound for lower bounds, as

rccp′(n) ∈ Ω(n2) = Ω(rcproc(cp′)(n)).

Thus, proc is asymptotically equivalent.

Note that one can often compute concrete bounds even if processors which
are only asymptotically sound are used. To this end, one has to quantify the
difference between rccp and rcproc(cp) and adapt the bound obtained for rcproc(cp)
correspondingly. However, for the sake of simplicity we do not formalize such
liftings from asymptotic to concrete bounds.
Now sequences of processors which are sound for upper (resp. lower) bounds can
be used to simplify an initial complexity problem until we obtain a complexity
problem where an upper (resp. lower) bound can be computed directly. Then
the resulting bound is also valid for the initial complexity problem. Thus, all
complexity analysis techniques presented in this thesis are either processors as
introduced in Definition 2.22 or they directly yield a (lower or upper) bound
for a complexity problem.

Related Frameworks

Our framework based on complexity problems is inspired by the framework
from [131] as well as the adaptions of the Dependency Pair Framework [66] for
complexity analysis [15, 105]. However, all of these frameworks are specific to
term rewriting and use a fixed size measure. Moreover, our weighted relations
allow arbitrary costs, whereas [15, 105, 131] essentially just allow costs 1 and 0
by splitting the analyzed term rewrite system into two components R and S
such that S-steps are “for free”. Regarding the analyzed transition relation, [131]
is restricted to the classical (full) term rewrite relation (cf. Chapter 7), [105] is
restricted to the innermost term rewrite relation (see also Chapter 7), and [15]
can handle both, innermost and full term rewriting. In contrast, we consider
arbitrary transition relations. Finally, as in our framework the complexity
problems from [15, 131] explicitly contain a set of start terms, whereas the start
terms are implicit (and thus fixed) in the framework from [105].
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On the other hand, the processors from [15] transform complexity problems
into sets of new problems, which is not supported by our processors. Moreover,
[15, 105, 131] also support transformation which are not complexity preserving.
Then each application of a processor proc is annotated with additional infor-
mation to obtain a bound for the original complexity problem from bounds for
the complexity problem(s) resulting from proc (which are called DT problems
in [105]). Thus, the notions of processors from [15, 105, 131] are more general
than ours. However, the additional flexibility of these processors is not needed
for the formalization of the complexity analysis techniques presented in this
thesis.
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Part II

Complexity Analysis of Integer Rewrite Systems
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3

Introduction

In this part, we present two complexity analysis techniques for (subclasses of)
integer rewrite systems. Both techniques have been inspired by the modular
analysis implemented in the tool KoAT [27], which infers runtime and size
bounds for program parts independently to achieve compositionality.
Chapter 4 introduces the first technique for the inference of lower bounds for
integer transition systems, i.e., integer rewrite systems with limited support for
recursion. Like the approach from [27], the presented analysis is completely
modular. To achieve compositionality, it infers runtime bounds and applies re-
currence solving techniques to program parts independently, i.e., in contrast to
[27] we use recurrence solving instead of size bounds. The reason is that KoAT’s
size bounds are an over-approximation and hence unsound for the inference of
lower bounds, where under-approximations are needed. The resulting polyno-
mial, exponential, or even infinite lower bounds complement the corresponding
upper bounds computed by state-of-the-art tools like, e.g., CoFloCo [48, 50],
KoAT [27], Loopus [114], or PUBS [3].
The technique presented in Chapter 5 overcomes one of the main restrictions
of [27], namely its limited support for recursion. To this end, we introduce
a modular bottom-up analysis, which first infers runtime and size bounds for
(mutually recursive sets of) “auxiliary functions”, i.e., leaves of the call graph
(resp. SCCs of the call graph without outgoing edges), and then eliminates
calls to these functions from the analyzed program. In this way, inner nodes of
the call graph become leaves and hence they can be analyzed in the next step.
To enable modularity, the presented technique is restricted to arithmetic on
natural numbers. In this way, we avoid dealing with non-monotonicity which
allows us to analyze recursive programs in a compositional way (see Section 5.6
for a discussion of an extension to full integer arithmetic). As the auxiliary
functions which are analyzed independently are turned into ITSs, all existing
tools and techniques for the analysis of ITSs can be reused in our setting. In
other words, the technique from Chapter 5 is completely independent from the
underlying complexity analysis tool for ITSs and hence it can be used to lift
any complexity analysis technique with little or no support for recursion like
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[8, 27, 71, 114] to recursive programs.
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4

Lower Bounds for Integer Transition Systems

In this chapter we consider Integer Transition Systems (ITSs), cf. Section 4.1. So
all computations carried out by the rewrite systems considered in this chapter
operate on integers, i.e., ITSs do not have any notion of “data structures”.
Moreover, they disallow nesting of function symbols, i.e., the result computed
by one function cannot be passed to another function.
So in the context of program verification (cf. Section 1.2), this chapter introduces
the first technique for the inference of lower bounds on the complexity of integer
programs with restricted support for recursion. While we also introduce the
first techniques for the inference of lower bounds for programs operating on data
structures in Part III, the combination of both integers and data structures as
well as an extension to full recursion is left to future work.
In Sections 4.2 and 4.3, we consider a restriction of ITSs, namely linear ITSs.
They correspond to iterative (resp. tail-recursive) integer programs and tech-
niques to infer upper bounds on the complexity of linear ITSs or equivalent
formalisms have been widely studied [8, 27, 71, 114]. However, so far there
were no techniques to prove lower bounds on the runtime complexity of linear
ITSs. The first technique to infer such lower bounds is presented in Sections 4.2
and 4.3.
In Section 4.2, we show how to use a variation of classical ranking functions
which we call metering functions to under-estimate the number of iterations of
a simple loop, i.e., a loop without nested loops or branching. Then, we present
a framework to simplify linear ITSs iteratively in Section 4.3. It transforms
arbitrary linear ITSs (with branching and sequences of possibly nested loops)
to ITSs with only simple loops. Moreover, it eliminates simple loops by (un-
der-)approximating their effect using a combination of metering functions and
recurrence solving. In this way, linear ITSs are transformed to simplified ITSs
without loops which directly give rise to bounds of the form

ϕ =⇒ dh(f(x1, . . . , xn)) ≥ a, (4.1)

i.e., they witness that for all models σ of some constraint ϕ, the derivation
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height of f(x1, . . . , xn)σ is at least aσ.
Nowadays, there is also tool support for the inference of upper bounds on the
runtime complexity of non-linear ITSs [3, 27, 48, 50]. Consequently, we also
study an extension of our technique to non-linear ITSs in Section 4.4, i.e.,
Sections 4.2 to 4.4 allow us to transform arbitrary ITSs into simplified ITSs in
order to obtain bounds like (4.1).
However, bounds like (4.1) are sometimes hard to grasp, as ϕ as well as a
can be quite complex. Hence, we introduce techniques which allow us to in-
fer asymptotic lower bounds from simplified ITSs in Sections 4.5 and 4.6. In
contrast to bounds like (4.1), asymptotic bounds directly provide an intuitive
understanding of the complexity of an ITS. Section 4.5 introduces a calculus
to compute asymptotic bounds by repeatedly simplifying a limit problem, an
abstraction of the constraint ϕ in (4.1) which allows us to focus on ϕ’s limit
behavior, i.e., on the question if ϕ is satisfied “for large enough inputs”. Sec-
tion 4.6 shows how limit problems can be encoded to quantifier free first-order
formulas with integer arithmetic in many cases such that we can benefit from
the power of SMT solvers instead of applying the rules of our calculus from
Section 4.5 heuristically. Note that the calculus from Section 4.5 can simplify
limit problems such that our SMT encoding becomes applicable and our SMT
encoding can be integrated seamlessly into the calculus from Section 4.5, i.e.,
both techniques complement each other.
Finally, we discuss related work in Section 4.7, evaluate our implementation
LoAT in Section 4.8, and conclude in Section 4.9.
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4.1 Program Model

We now introduce our program model, i.e., (linear) ITSs. Such ITSs have
built-in support for integer arithmetic via arithmetic expressions.

Definition 4.1 (Arithmetic Expressions). Let V be a set of variables and
let ΣZ = {+,−, /, ·, ˆ} ∪ Z. T (ΣZ,V) is the set of all arithmetic expressions.
To ease notation, we use infix notation for symbols from ΣZ \ Z and we
often identify arithmetic expressions t with V(t) = {x1, . . . , xn} with the
corresponding function λx1, . . . , xn. t.

Thus, 7 + 3 and 2ˆx are arithmetic expressions and if we call the latter a
“function”, then we mean the function λx. 2ˆx. While Definition 4.1 clarifies
which terms are syntactically legal arithmetic expressions in our program model,
the following definition clarifies their semantics.

Definition 4.2 (Evaluating Arithmetic Expressions). For each symbol ◦ ∈
{+,−, /, ·, ˆ}, let • be the usual interpretation of ◦ (i.e., addition if ◦ is +,
exponentiation if ◦ is ˆ, etc.). We define the function J·K : T (ΣZ)→ Q by

JtK = t if t ∈ Z and JtK = Jt1K • Jt2K if t = t1 ◦ t2.

Hence, we have, e.g., J7 + 3K = 10, i.e., the semantics of arithmetic expressions
in our program model mimics their usual semantics in mathematics. Thus,
unless necessary we do not distinguish between syntactic equality and semantic
equivalence of arithmetic expressions, i.e., we write “7+3 = 10” instead of “J7+
3K = 10” etc. Note that the codomain of J·K is Q, i.e., J1/2K = 1

2 . However, as the
variables of an ITS range over Z, the integer programs considered in this chapter
terminate whenever such non-integer values are computed, cf. Definition 4.4.
To restrict the control flow of ITSs, we use constraints which have integer
substitutions as models.

Definition 4.3 (Integer Substitutions, Constraints). A substitution σ such
that JxσK ∈ Z for each x ∈ V is called an integer substitution. As for (non-
integer) substitutions, we sometimes denote integer substitutions by finite
sets of key-value pairs {x/t}. Then each x ∈ V \ x is implicitly mapped to 0.
A constraint ϕ is a finite conjunction of (in-)equalities over arithmetic expres-
sions and Fml(V) is the set of all constraints over V. We lift substitutions
to constraints in the obvious way and write V(ϕ) for the set of all variables
occurring in ϕ. We write σ |= ϕ if the integer substitution σ is a model of ϕ.

Note that σ may instantiate variables with arithmetic expressions (as opposed
to just numbers). Thus, we have, e.g., {x/1 + 1} |= x = 2. This allows ITSs to
evaluate program states like f(1 + 1) without normalizing the subterm 1 + 1 to
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its value J1 + 1K = 2 beforehand and thus simplifies the definition of the Integer
Transition Relation, the transition relation of ITSs (cf. Definition 4.6).

Definition 4.4 (Integer Transition System (ITS)). Let Σ be a finite signature
with Σ∩ΣZ = ∅. An ITS rule α over Σ is of the form f(x) c−→ r [ϕ] where f ∈ Σ,
x is a vector of pairwise different variables, c ∈ T (ΣZ,V), r ∈ T (Σ ∪ ΣZ,V),
ϕ ∈ Fml(V), and r D g(t) with g ∈ Σ implies t ⊆ T (ΣZ,V). An Integer
Transition System (ITS) over Σ is a set of ITS rules over Σ.
The left-hand side of α is lhs(α) = f(x), its right-hand side is rhs(α) = r, its
root is root(α) = f, its cost is cost(α) = c, and its guard is guard(α) = ϕ.
Moreover, we define V(α) = V(lhs(α))∪V(rhs(α))∪V(cost(α))∪V(guard(α)).
The number of function symbols from Σ in r is called the degree of α. A rule
is linear if it has at most degree 1. An ITS is linear if each of its rules is
linear.

So while the right-hand side of an ITS rule may contain several function symbols
from Σ, these function symbols must not be nested (which is enforced by the
condition “r D g(t) with g ∈ Σ implies t ⊆ T (ΣZ,V)”). Thus, the result
computed by one function cannot be passed to another one as argument. Hence,
ITSs can model tail-recursive functions (where function calls can be inlined),
but non-tail recursive functions can only be modeled if the results of calls to
such functions are irrelevant and thus can be discarded.
Note that the question if a rule ` c−→ r [ϕ] is linear is not related to linearity
of ` or r (cf. Definition 2.1). The idea of linear ITSs is rather that they are
restricted to linear recursion, i.e., they cannot express non-linear recursion as
in the rule

fib(x) 1−→ fib(x− 1) + fib(x− 2) [x > 1]. (4.2)

Example 4.5 (Non-Linear ITS Rules). The recursive rule to compute the
Fibonacci numbers (4.2) is a valid ITS rule, but not a linear ITS rule, as the
right hand side contains more than one function symbol. However, a rule
like

ack(m,n) 1−→ ack(m− 1, ack(m,n− 1)) [m > 0 ∧ n > 0]

is not a valid ITS rule. The reason is that the root of the right-hand side is
a function symbol from Σ, but its second argument ack(m,n− 1) is not an
arithmetic expression.

Figure 4.1c shows an example for a linear ITS, i.e., here every right-hand side
just contains a single symbol from Σ. It corresponds to the pseudo-code in
Figure 4.1a, where random(x, y) returns a random integer m with x < m < y.
The following definition clarifies how to evaluate ITSs.
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4.1. Program Model

f0: y = 0 ;
f1: while ( x > 0) {

y = y + x ;
x = x − 1 ;

}
z = y ;

f2: while ( z > 0) {
u = z − 1 ;

f3: while (u > 0) {
u = u − random (0 ,ω ) ;

}
z = z − 1 ;

}

(a) Example Integer Program

f0

f1

f2

f3

α0[1] : y′ = 0α1[1] : if (x > 0)
y′ = y + x
x′ = x− 1 α2[1] : if (x ≤ 0)

z′ = y

α3[1] : if (z > 0)
u′ = z − 1

α4[1] : if (u > 0 ∧ tv > 0)
u′ = u− tv

α5[1] : if (u ≤ 0)
z′ = z − 1

(b) Example ITS – Graph Representation

α0 : f0(x, y, z, u) 1−→ f1(x, 0, z, u)
α1 : f1(x, y, z, u) 1−→ f1(x− 1, y + x, z, u) [x > 0]
α2 : f1(x, y, z, u) 1−→ f2(x, y, y, u) [x ≤ 0]
α3 : f2(x, y, z, u) 1−→ f3(x, y, z, z − 1) [z > 0]
α4 : f3(x, y, z, u) 1−→ f3(x, y, z, u− tv) [u > 0 ∧ tv > 0]
α5 : f3(x, y, z, u) 1−→ f2(x, y, z − 1, u) [u ≤ 0]

(c) Example ITS – Rule Representation

Figure 4.1: Different Representations of Integer Programs

Definition 4.6 (Integer Transition Relation). Let P be an ITS. We have
s k−→P t if there is a context C, a rule ` c−→ r [ϕ] ∈ P, and an integer
substitution σ such that C[`σ] = s, C[rσ] = t, σ |= ϕ, and JcσK = k. We
write s k−→α t instead of s k−→P t if P is the singleton set containing α.

So the integer transition relation is clearly a weighted relation (cf. Defini-
tion 2.10). Using the rules from Figure 4.1c, we have, e.g.,

f0(3, 2, 1, 0) 1−→α0
f1(3, 0, 1, 0)

1−→α1
f1(3− 1, 0 + 3, 1, 0)

1−→α1
f1(3− 1− 1, 0 + 3 + 3− 1, 1, 0)

1−→α1
. . .

So as mentioned before, the integer transition relation does not evaluate arith-
metic expressions. Intuitively, the result of evaluating a term t with an ITS
is obtained by first computing a normal form s of t and then evaluating all
arithmetic expressions in s using J·K. The reason for not applying J·K eagerly
after every −→P -step is that in this way t −→α s and τ ∈ pos(rhs(α)) implies
π.τ ∈ pos(s) where π is the position where the rewrite step t −→α s takes place.
This property greatly simplifies many proofs which argue about both positions
and rewrite sequence. In examples, however, we sometimes simplify arithmetic
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expressions for the sake of readability.
Note that the derivation height of a term w.r.t. an ITS can be unbounded even
if the ITS terminates.

Example 4.7 (Unbounded Costs without Non-Termination). Consider the
ITS rule f(x) y−→ f(x−1) [x > 0]. By Definition 4.6, every integer substitution
σ with σ |= x > 0 can be used to rewrite f(xσ) to f(xσ − 1). Thus, for any
n ∈ N we have f(1) n−→ f(0) using the integer substitution σn = {x/1, y/n}.
Therefore we have dh(f(1)) = ω.

Definition 4.4 allows ITSs which produce non-integer intermediate values like
f(x) −→ f(x/2). While such evaluations get stuck immediately (e.g., we cannot
rewrite f(1/2) to f(1/4) as {x/(1/2)} is not an integer substitution), some of
the presented techniques assume that the analyzed ITS just computes integer
values. Hence, throughout this chapter we restrict ourselves to well-formed
ITSs.

Definition 4.8 (Well-Formed ITS). An ITS rule α is well formed if rhs(α) D
f(t) with f ∈ Σ implies JtσK ⊆ Z for all integer substitutions σ with σ |=
guard(α). An ITS is well formed if each of its rules is well formed.

To ensure that the analyzed ITS P0 is initially well formed, we just allow
addition, subtraction, and multiplication in P0, but we disallow division and
exponentiation. While our approach relies on several program transformations,
i.e., the initial ITS P0 is usually transformed to several other ITSs P1,P2, . . .

which may contain division and exponentiation, these transformations preserve
well-formedness.
When analyzing the complexity of an ITS, then one is usually interested in the
cost of evaluating a term of the form f(n) where f ∈ Σ and n ⊆ Z. We call
such terms int-basic.

Definition 4.9 (Int-Basic Terms). Let Σ be a signature and let f ∈ Σ. We
define

Tbasic(f) = {f(n) | n ⊆ Z, arΣ(f) = len(n)}.

Then
Tbasic(Σ) =

⋃
f∈Σ
Tbasic(f)

is the set of all int-basic terms over Σ.

As standard for ITSs, we always assume that Σ contains a canonical start symbol
f0 throughout this chapter and we are only interested in program runs whose
start term is from Tbasic(f0). Note that this is not a restriction, as we can
simulate several start symbols f1, . . . , fn by adding corresponding rules from f0
to f1, . . . , fn.
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4.1. Program Model

Thus, we now fixed the transition relation (Definition 4.6) and the start terms
we are concerned with. So the last missing piece in order to arrive at complexity
problems for ITSs is a suitable size measure.

Definition 4.10 (‖·‖i). Let f(n) be an int-basic term. We define

‖f(n)‖i =
∑
|n|.

Now all the ingredients to define the canonical complexity problem of an ITS
are at hand.

Definition 4.11 (Canonical Complexity Problem). Let P be an ITS over
Σ. The canonical complexity problem of P is cp(P) = (Tbasic(f0),−→P , ‖·‖i).

W.l.o.g., we assume that the start symbol f0 does not occur on right-hand sides.
Otherwise, one can add a fresh start symbol f ′0 and connect it with f0.
We also assume that all function symbols in Σ have the same arity. Otherwise,
one can construct a variant of P where additional unused arguments are added
to each function symbol whose arity is not maximal. Moreover, we assume that
the left-hand sides of P only differ in their root symbols, i.e., the argument
lists are equal (e.g., in Figure 4.1c, the variables on the left-hand sides are
consistently named x, y, z, u). Otherwise, one can rename variables accordingly
without affecting the relation −→P . Those variables which occur on left-hand
sides are called program variables and all other variables are called temporary.
PV resp. T V is the set of all program variables resp. temporary variables. So
in Figure 4.1c, we have PV = {x, y, z, u} and T V = {tv}.
Furthermore, we assume that every right-hand side is of the form

m∑
i=1

fi(ti) where m > 0 and f1, . . . , fm ∈ Σ. (4.3)

Clearly, each ITS rule can be transformed to this form without affecting the
runtime complexity of the overall ITS. If a right-hand side does not contain any
function symbols (i.e., it is an arithmetic expression), then it can be replaced
by sink(0, . . . , 0) where sink is a fresh function symbol.
We now focus on linear ITSs until we consider non-linear ITSs in Section 4.4.
For each linear rule

α = f(x) −→ g(t) [ϕ],

its update is update(α) = {x/t} and its target is target(α) = g.
Linear ITSs can be represented as directed graphs where each node corresponds
to a function symbol and each edge corresponds to a rule. Figure 4.1b shows
the graphical representation of Figure 4.1c, where we write the costs of a rule
in [ ] next to its name and represent the updates by imperative commands. We
use x to refer to the value of the variable x before the update and x′ to refer
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to x’s value after the update. As it nicely exposes the control flow, we often
use the graphical representation for ITSs with nested loops and branching in
examples.
In Figure 4.1b, the loop at f1 sets y to a value that is quadratic in x. Thus,
the loop at f2 is executed quadratically often where in each iteration, the inner
loop at f3 may also be repeated quadratically often. Thus, the ITS’s runtime
complexity is a polynomial of degree 4 in x. Our technique can infer such lower
bounds automatically.
Our goal is to find a lower bound on the runtime complexity of an ITS P
which is as precise as possible (i.e., a lower bound which is, e.g., unbounded,
exponential, or a polynomial of a degree as high as possible). For all terms
f0(x, y, z, u) with x > 1, our method will detect that the derivation height of
the ITS in Figure 4.1 is at least 1

8x
4 + 1

4x
3 + 7

8x
2 + 7

4x. From this concrete
lower bound, our approach will infer that the asymptotic runtime complexity
of the ITS is in Ω(n4).
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4.2 Estimating the Number of Iterations

We now show how to under-estimate the number of possible loop iterations for
linear ITSs. We only consider simple loops of the form

α = f(x) −→ f(x)η [ϕ]

where η is the update of α and show how to transform more complex loops into
simple loops in Section 4.3. So our goal is to infer an arithmetic expression
b such that for all integer substitutions σ with σ |= ϕ, there is an integer
substitution σ′ with

f(x)σ −→dbσeα f(x)σ′.

Here, as usual, dxe is the smallest integer n with n ≥ x (and, similarly, bxc is
the largest integer n with n ≤ x).
To find such estimations, we use an adaptation of ranking functions [8, 19, 25,
109] which we call metering functions.

Definition 4.12 (Ranking Function). We say that b ∈ T (ΣZ,V) is a ranking
function for a simple loop α with update(α) = η if the following conditions
hold:

guard(α) =⇒ b > 0 (4.4)
guard(α) =⇒ bη ≤ b− 1 (4.5)

So e.g., x is a ranking function for α1 in Figure 4.1. If T V(α) = ∅, then for
any integer substitution σ, bσ over-estimates the number of repetitions of the
loop α:1 (4.5) ensures that bσ decreases at least by 1 in each loop iteration, and
(4.4) requires that bσ is positive whenever the loop can be executed.
In contrast, metering functions are under-estimations for the maximal number
of repetitions of a simple loop.

Definition 4.13 (Metering Function). We call b ∈ T (ΣZ,V) a metering
function for a simple loop α with update(α) = η if the following conditions
hold:

¬guard(α) =⇒ b ≤ 0 (4.6)
guard(α) =⇒ bη ≥ b− 1 (4.7)

Here, (4.7) ensures that bσ decreases at most by 1 in each loop iteration, and
(4.6) requires that bσ is non-positive if the loop cannot be executed. Thus, the
loop can be executed at least bσ times (i.e., bσ is an under-estimation).
For the loop α1 in Figure 4.1, x is also a valid metering function: (4.6) requires

1Without requiring T V(α) = ∅, x− tv were a ranking function for the non-terminating
simple loop f(x)→ f(x− 1) [x > tv].
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¬x > 0 =⇒ x ≤ 0 and (4.7) requires x > 0 =⇒ x − 1 ≥ x − 1. While x
is a metering and a ranking function, 1

2 · x is a metering, but not a ranking
function for α1. Similarly, x2 is a ranking, but not a metering function for α1.
Theorem 4.14 states that a simple loop α can be executed at least dbσe times
when starting with lhs(α)σ if b is a metering function for α.

Theorem 4.14 (Metering Functions are Under-Estimations). Let b be a
metering function for a well-formed simple loop α with update(α) = η. Then
b under-estimates α, i.e., for all integer substitutions σ with σ |= guard(α)∧
b ≥ 0

lhs(α)σ −→α lhs(α)ησ −→α . . . −→α lhs(α)ηdbσeσ

is a rewrite sequence which σ-preserves T V, i.e., the temporary variables are
instantiated according to σ in every step.

Proof. For any integer substitution σ, let mσ ∈ N∪{ω} be the maximal number
such that lhs(α)σ −→mσα lhs(α)ηmσσ is a rewrite sequence that σ-preserves T V.
So the loop α can be executed mσ times without changing the temporary
variables when starting with lhs(α)σ.
If mσ = ω, then

lhs(α)σ −→α lhs(α)ησ −→α lhs(α)η2σ −→α . . .

is an infinite rewrite sequence that σ-preserves T V and thus the claim is trivial.
For the case mσ 6= ω, we use induction on mσ. The base case mσ = 0 is trivial.
For the induction step, note that σ |= guard(α) implies that

lhs(α)σ −→α lhs(α)ησ σ-preserves T V. (4.8)

Case 1. η � σ |= guard(α)
Note that mσ > mη�σ. Thus, by the induction hypothesis

lhs(α)ησ −→α lhs(α)η2σ −→α . . . −→α lhs(α)ηdbησeησ (4.9)

η�σ-preserves T V. Since (η�σ)|T V = σ|T V , this implies that (4.9) σ-preserves
T V. With (4.8) we obtain that

lhs(α)σ −→α lhs(α)ησ −→α . . . −→α lhs(α)ηdbησe+1σ

σ-preserves T V. This proves the theorem, since (4.7) implies dbησe + 1 ≥
dbσe.

Case 2. η � σ 6|= guard(α)
Then (4.6) implies bησ ≤ 0 and thus (4.7) implies dbσe ≤ 1. Hence, (4.8)
proves the theorem.
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Our implementation builds upon a well-known transformation based on Farkas’
Lemma [25, 109] to find linear metering functions. The basic idea is to search
for coefficients of a linear template polynomial b such that (4.6) and (4.7) hold
for all possible instantiations of the variables V(α). In addition to (4.6) and
(4.7), we also require (4.4) to avoid trivial solutions like b = 0. Here, the
coefficients of b are existentially quantified, while the variables from V(α) are
universally quantified. As in [25, 109], eliminating the universal quantifiers
using Farkas’ Lemma allows us to use standard SMT solvers to search for b’s
coefficients.
When searching for a metering function for a simple loop α with update(α) = η,
one can omit constraints from guard(α) that are irrelevant for α’s termination.
So if guard(α) is ϕ∧ψ and guard(α) =⇒ ψη, then it suffices to find a metering
function b for α′ = lhs(α) −→ rhs(α) [ϕ].

Lemma 4.15 (Irrelevant Constraints). Let α be a simple loop such that
update(α) = η and guard(α) = ϕ∧ψ where guard(α) implies ψη. Moreover,
let b be an arithmetic expression which under-estimates α′ where α′ is like α,
but guard(α′) = ϕ. Then b under-estimates α.

Proof. Let σ be an integer substitution such that σ |= guard(α). For all n ∈ N,
we prove: If

lhs(α′)σ −→α′ lhs(α′)ησ −→α′ . . . −→α′ lhs(α′)ηnσ

is a rewrite sequence that σ-preserves T V, then

lhs(α)σ −→α lhs(α)ησ −→α . . . −→α lhs(α)ηnσ

is a rewrite sequence that σ-preserves T V. Then the claim follows immediately.
We use induction on n. The cases n = 0 and n = 1 are trivial. If n > 1, then
by the induction hypothesis

lhs(α)σ −→α lhs(α)ησ −→α . . . −→α lhs(α)ηn−1σ

is a rewrite sequence that σ-preserves T V. Hence, ηn−2 � σ |= guard(α). Since
guard(α) =⇒ ψη, we obtain ηn−2 � σ |= ψη and thus ηn−1 � σ |= ψ. Since
lhs(α′)ηn−1σ −→α′ lhs(α′)ηnσ implies ηn−1 �σ |= ϕ, we get ηn−1 �σ |= guard(α).
Thus lhs(α)ηn−1σ −→α lhs(α)ηnσ is a rewrite step which ηn−1 �σ-preserves T V.
Since (ηn−1 �σ)|T V = σ|T V , it is also a rewrite step that σ-preserves T V. Thus,

lhs(α)σ −→α lhs(α)ησ −→α . . . −→α lhs(α)ηnσ

is a rewrite sequence that σ-preserves T V.

So if
α = f(x, y) −→ f(x+ 1, y) [x < y ∧ 0 < y],
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we can consider
α′ = f(x, y) −→ f(x+ 1, y) [x < y]

instead. While α only has complex metering functions like min(y − x, y), α′
has the linear metering function y − x.

Example 4.16 (Unbounded Loops). Let α be a simple loop whose update
is η. If guard(α) =⇒ guard(α)η and hence the whole guard can be omitted,
then α does not terminate. So for

P = {f0(x, y) 1−→ f(x, y), α}

with
α = f(x, y) y−→ f(x+ 1, y) [0 < x],

we can omit 0 < x since 0 < x =⇒ 0 < x + 1. Hence, a fresh temporary
variable tv under-estimates the resulting loop f(x, y) y−→ f(x+ 1, y) and thus,
tv also under-estimates α.
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We now define processors to simplify complexity problems over linear ITSs.
They are applied repeatedly until extraction of a (concrete) lower bound is
straightforward. In Section 4.3.1, we show how to accelerate a simple loop α to
a rule which is equivalent to applying α multiple times (according to a metering
function for α). The resulting ITS can be simplified by chaining subsequent
rules which may result in new simple loops, cf. Section 4.3.2. We describe a
simplification strategy which alternates these steps repeatedly. In this way, we
eventually obtain a simplified ITS without loops which directly gives rise to a
concrete lower bound.

4.3.1 Accelerating Simple Loops

Consider a simple loop α with update(α) = η and cost(α) = c. To accelerate α,
we compute its iterated update and costs, i.e., a closed form ηit of ηtv and an
under-approximation cit ∈ T (ΣZ,V) of

∑tv−1
i=0 cηi for a fresh temporary variable

tv. If b under-estimates α, then we add the rule

lhs(α) cit−→ lhs(α)ηit [guard(α) ∧ 0 < tv < b+ 1]

to the ITS. It summarizes tv iterations of α, where tv is positive and bounded
by dbe. It does not cover the case that α is not applied at all. Otherwise, given
a loop with xη = 0 we would get

xηit =
{

0 if tv > 0
x otherwise

i.e., the iterated update could not be expressed using arithmetic expressions
from T (ΣZ,V) even in quite simple cases.
Note that ηit and cit may also contain division and exponentiation (i.e., we can
also infer exponential bounds).
For PV = {x1, . . . , xn}, the iterated update is computed by solving the re-
currence equations x(1) = xη and x(tv+1) = xη{x1/x

(tv)
1 , . . . , xn/x

(tv)
n } for all

x ∈ PV. So for the rule α1 from Figure 4.1 we get the recurrence equations
x(1) = x − 1, x(tv1+1) = x(tv1) − 1, y(1) = y + x, and y(tv1+1) = y(tv1) + x(tv1).
Usually, they can easily be solved using state-of-the-art recurrence solvers
[18]. In our example, we obtain the closed forms xηit = x(tv1) = x − tv1 and
yηit = y(tv1) = y + tv1 · x− 1

2 · tv
2
1 + 1

2 · tv1. While yηit contains rational coeffi-
cients, our approach ensures that ηit always maps integers to integers. Thus, our
technique to accelerate loops preserves well-formedness. We proceed similarly
for the iterated cost of a rule, where we may under-approximate the solution of
the recurrence equations c(1) = c and c(tv+1) = c(tv) + c{x1/x

(tv)
1 , . . . , xn/x

(tv)
n }.

For α1 in Figure 4.1, we get c(1) = 1 and c(tv1+1) = c(tv1) + 1 which leads to
the closed form cit = c(tv1) = tv1.
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Chapter 4. Lower Bounds for ITSs

Theorem 4.17 (Loop Acceleration). Let P be a well-formed ITS, let α ∈ P
be a simple loop with update(α) = η and cost(α) = c, let tv be a fresh tem-
porary variable, and let b be an arithmetic expression which under-estimates
α. Moreover, let xηit = xηtv for all x ∈ PV, let cit ≤

∑tv−1
i=0 cηi, and let

P ′ = P ∪ {lhs(α) cit−→ lhs(α)ηit [guard(α) ∧ 0 < tv < b+ 1]}.

Then P ′ is well formed and the processor mapping cp(P) to cp(P ′) is equiv-
alent.

Proof. Soundness for upper bounds is trivial. It remains to show that P ′ is well
formed and that the processor is sound for lower bounds. Let

αit = lhs(α) cit−→ lhs(α)ηit [guard(α) ∧ 0 < tv < b+ 1]

and let σ be an integer substitution such that σ |= guard(αit), i.e., we have
lhs(α)σ citσ−−→αit

lhs(α)ηitσ. Note that σ |= 0 < tv < b+ 1 implies σ |= 0 < tv ≤
dbe. Moreover, we have σ |= guard(α), and thus by Theorem 4.14,

lhs(α)σ cσ−→α lhs(α)ησ cησ−−→α . . .
cη(tv−1)σσ−−−−−−→α lhs(α)η(tv)σσ (4.10)

is a rewrite sequence that σ-preserves T V.

Claim 1. P ′ is well formed.
We have to show JxηitσK ∈ Z for all x ∈ PV. We have η(tv−1)σ �σ |= guard(α)
by (4.10) and thus Jxη(tv)σσK ∈ Z since P is well formed. By definition of
ηit, we have xηit = xηtv and thus JxηitσK ∈ Z, as desired.

Claim 2. The processor is sound for lower bounds.
It suffices to show that every evaluation step with αit can be simulated using a
sequence of evaluation steps with α with at least the same costs. By definition
of ηit and cit, we have xηit = xηtv for all x ∈ PV and cit ≤

∑tv−1
i=0 cηi, as

desired. Thus, the claim follows from (4.10).

While the fresh variable tv that represents the number of loop iterations which
are summarized by an accelerated loop ranges over the integers, its upper bound
b+ 1 can be rational, as the following example shows.

Example 4.18 (Non-Integer Metering Functions). Theorem 4.17 also allows
metering functions that do not map to the integers. Let

P = {f0(x) 1−→ f(x), α} with α = f(x) 1−→ f(x− 2) [0 < x].
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Accelerating α with the metering function 1
2 · x yields

f(x) tv−→ f(x− 2 · tv)
[
0 < tv < 1

2 · x+ 1
]
.

Note that 0 < tv < 1
2 · x+ 1 implies 0 < x as tv and x range over Z. Hence,

0 < x can be omitted in the resulting guard.

If a simple loop is under-estimated by a fresh temporary variable tv (i.e., if it
is non-terminating), then the upper bound b + 1 = tv + 1 on the number of
summarized loop iterations can take arbitrary values.

Example 4.19 (Unbounded Loops Continued). In Example 4.16, the fresh
temporary variable tv under-estimates α = f(x, y) y−→ f(x+ 1, y) [0 < x]. The
resulting accelerated loop is

αit = f(x, y) tv1·y−−−→ f(x+ tv1, y) [0 < x ∧ 0 < tv1 < tv + 1].

Since tv does not have any upper bound, the value of tv1 is not bounded by
the values of the program variables x and y.

If we cannot find a metering function or fail to obtain the closed form ηit or cit
for a simple loop α, then we can simplify α by eliminating temporary variables.
To do so, we fix their values by adding suitable constraints to guard(α). As
we are interested in witnesses for maximal computations, we use a heuristic
that adds constraints tv = a for temporary variables tv, where the arithmetic
expression a is a suitable upper or lower bound on tv’s values, i.e., guard(α)
implies tv ≤ a or tv ≥ a, but not tv ≤ a − 1 or tv ≥ a + 1. This is repeated
until we find constraints which allow us to apply loop acceleration. Note that
adding additional constraints to guard(α) is always sound in our setting.

Theorem 4.20 (Strengthening). Let P be a well-formed ITS, let α ∈ P, let
ϕ be a constraint, and let P ′ = P ∪ {α′} where α′ is like α, but guard(α′) is
guard(α) ∧ ϕ. Then P ′ is well formed and the processor mapping cp(P) to
cp(P ′) is equivalent.

Proof. Soundness for upper bounds is trivial. For lower bounds, the processor is
sound since t k−→α′ t′ implies t k−→α t′ as guard(α′) implies guard(α). Moreover,
P ′ is trivially well-formed, since update(α′) = update(α).

In α4 from Figure 4.1, guard(α4) contains the constraint tv > 0. So guard(α4)
implies the bound tv ≥ 1 since tv must be instantiated by integers. Hence,
we strengthen it with the constraint tv = 1. Now the update {u/u − tv} of
the strengthened rule α′4 is equivalent to {u/u− 1}, and thus, u is a metering
function. So by fixing tv = 1, α′4 can be accelerated similarly to α1.
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f0

f1

f2

f3

α0[1] : y′ = 0α1[tv1] : if (0 < tv1 < x+ 1)
y′ = y + tv1 · x− 1

2 tv2
1 + 1

2 tv1
x′ = x− tv1 α2[1] : if (x ≤ 0)

z′ = y

α3[1] : if (z > 0)
u′ = z − 1

α4[tv4] : if (0 < tv4 < u+ 1)
u′ = u− tv4

α5[1] : if (u ≤ 0)
z′ = z − 1

(a) Accelerating α1 and α4

f0

f1

f2

f3

α0.1[tv1 + 1] : if (0 < tv1 < x+ 1)
y′ = tv1 · x− 1

2 tv2
1 + 1

2 tv1
x′ = x− tv1

α2[1] : if (x ≤ 0)
z′ = y

α3.4[tv4 + 1] : if (0 < tv4 < z)
u′ = z − 1− tv4

α5[1] : if (u ≤ 0)
z′ = z − 1

(b) Eliminating α1 and α4

Figure 4.2: Loop Elimination

To simplify the ITS, we delete the original rules after strengthening or accel-
erating them, i.e., we just keep accelerated loops. For our example, we obtain
the ITS in Figure 4.2a with the accelerated rules α1 and α4.

Theorem 4.21 (Deletion). Let P be a well-formed ITS, let α ∈ P, and let
P ′ = P \ {α}. Then P ′ is well formed and the processor mapping cp(P) to
cp(P ′) is sound for lower bounds.

Proof. Since P is well formed, P ′ is trivially well formed, too. The processor
is sound for lower bounds since every evaluation sequence with P \ {α} is also
an evaluation sequence with P.

4.3.2 Chaining Rules

After trying to accelerate all simple loops of an ITS, we can chain subsequent
rules α1, α2 by adding a new rule α1.2 that simulates their combination. After-
wards, the rules α1 and α2 can (but need not) be deleted with Theorem 4.21.
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Theorem 4.22 (Chaining). Let P be a well formed ITS and let α1, α2 ∈ P
where

α1 = f1(x) c1−→ f2(x)η1 [ϕ1] and
α2 = f2(x) c2−→ f3(x)η2 [ϕ2].

W.l.o.g., let T V(α1)∩T V(α2) = ∅ (otherwise, the temporary variables in α2
can be renamed accordingly). Moreover, let

α1.2 = f1(x) c1+c2η1−−−−−→ f3(x)η2η1 [ϕ1 ∧ ϕ2η1]

and let P ′ = P ∪ {α1.2}. Then P ′ is well formed and the processor mapping
cp(P) to cp(P ′) is equivalent.

Proof. We prove the more general Theorem 4.31 in Section 4.4.

Algorithm 1 Program Simplification
While there is a rule α with root(α) 6= f0:

1. Apply Deletion to rules whose guard is proved unsatisfiable or whose root
symbol is unreachable from f0.

2. While there is a non-accelerated simple loop α:
2.1. Try to apply Loop Acceleration to α.
2.2. If 2.1 failed and α uses temporary variables:

Apply Strengthening to α to eliminate a temporary variable.
2.3. Apply Deletion to α.

3. Let S = ∅.
4. While there is an accelerated rule α:

4.1. For each α′ with root(α′) 6= target(α′) = root(α):
Apply Chaining to α′ and α.
Add α′ to S.

4.2. Apply Deletion to α.
5. Apply Deletion to each rule in S.
6. While there is a function symbol f without simple loops but with incoming

and outgoing rules (starting with symbols f with just one incoming rule):
6.1. Apply Chaining to each pair α′, α where target(α′) = root(α) = f.
6.2. Apply Deletion to each α where root(α) = f or target(α) = f.

One goal of chaining is to eliminate all accelerated simple loops. To this end,
we chain all subsequent rules α′, α where α is a simple loop and α′ is no simple
loop. Afterwards, we delete α. Moreover, once α′ has been chained with all
subsequent simple loops, then we also remove α′, since its effect is now covered
by the newly introduced (chained) rule. So in our example from Figure 4.2a, we
chain α0 with α1 and α3 with α4. The resulting ITS is depicted in Figure 4.2b.
Chaining also allows to eliminate function symbols by chaining all pairs of
rules α, α′ where target(α) = root(α′) and removing them afterwards. It is
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f0

f2

α0.1.2[x+ 2] :
if (x > 0)
y′ = 1

2x
2 + 1

2x
x′ = 0
z′ = 1

2x
2 + 1

2x

α3.4.5[z + 1] :
if (z > 1)
u′ = 0
z′ = z − 1

(a) Eliminating f1 and f3

f0

f2

α0.1.2[x+ 2] :
if (x > 0)
y′ = 1

2x
2 + 1

2x
x′ = 0
z′ = 1

2x
2 + 1

2x

α
3.4.5

[tv · z − 1
2 tv2 + 3

2 tv] :
if (0 < tv < z)
u′ = 0
z′ = z − tv

(b) Accelerating α3.4.5

f0

f2

α[x
2·tv+x·tv−tv2+3tv+2x+4

2 ] :
if (0 < tv < 1

2x
2 + 1

2x)
y′ = 1

2x
2 + 1

2x

x′ = 0
u′ = 0
z′ = 1

2x
2 + 1

2x− tv

(c) Eliminating α
3.4.5

Figure 4.3: Finishing the Simplification

advantageous to eliminate symbols which are the target of just one single rule
first. This heuristic takes into account which rules were the entry points of
loops. So for the example in Figure 4.2b, it would avoid chaining α5 and α3.4
in order to eliminate f2. In this way, we avoid constructing chained rules that
correspond to a run from the “middle” of a loop to the “middle” of the next
loop iteration.
So instead of eliminating f2, we chain α0.1 and α2 as well as α3.4 and α5 to
eliminate the function symbols f1 and f3, leading to the ITS in Figure 4.3a. Here,
the temporary variables tv1 and tv4 vanish since, before applying arithmetic
simplifications, the guards of α0.1.2 resp. α3.4.5 imply tv1 = x resp. tv4 = z − 1.
Our overall approach for ITS simplification is shown in Algorithm 1. Of course,
this algorithm is a heuristic and other strategies for the application of the
processors would also be possible. The set S in the Steps 3 – 5 is needed to
handle function symbols f with multiple simple loops. The reason is that each
rule α′ with target(α′) = f should be chained with each of f’s simple loops
before removing α′.
Algorithm 1 terminates: The Loop 2 terminates since each iteration either
decreases the number of temporary variables in α or reduces the number of non-
accelerated simple loops. In Loop 4, the number of simple loops is decreasing
and for Loop 6, the number of function symbols decreases. The overall loop
terminates as it reduces the number of function symbols. The reason is that
the ITS does not have simple loops anymore when the algorithm reaches Step 6
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(as simple loops where acceleration fails are deleted in Step 2.3 and accelerated
loops are eliminated in Step 4). Thus, at this point there is either a function
symbol f which can be eliminated or the ITS does not have a path of length 2,
i.e., all rules have root f0.
According to Algorithm 1, in our example we go back to Step 1 and 2 and
apply Loop Acceleration to the rule α3.4.5. This rule has the metering function
z − 1 and its iterated update sets u to 0 and z to z − tv for a fresh temporary
variable tv. To compute α3.4.5’s iterated costs, we have to find an under-
approximation for the solution of the recurrence equations c(1) = z + 1 and
c(tv+1) = c(tv) + z(tv) + 1. After computing the closed form z − tv of z(tv), the
second equation simplifies to c(tv+1) = c(tv)+z−tv+1, which results in the closed
form cit = c(tv) = tv ·z− 1

2 · tv
2 + 3

2 · tv. By adding the corresponding accelerated
rule and removing α3.4.5 in Step 2.3, we obtain the ITS in Figure 4.3b. A final
chaining step and deletion of α0.1.2 and α

3.4.5
yields the ITS in Figure 4.3c.
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So far, we only considered linear ITSs, i.e., ITSs where all rules have the form
f(x) −→ g(t) [ϕ]. We now extend our technique to non-linear ITSs, i.e., we now
also consider rules where the right-hand side contains several function symbols.
Theorems 4.20 and 4.21 are trivially applicable to non-linear ITSs, i.e., we can
still add additional constraints to the guard of a rule and we can still remove
rules. However, Theorems 4.17 and 4.22 have to be adapted. In particular, we
have to extend our notion of metering functions to non-linear rules in order to
adapt Theorem 4.17. As in the case of linear ITSs, we first focus on simple non-
linear loops, i.e., loops f(x) c−→ r [ϕ] where r contains at least two occurrences of
f, but no other function symbols. Afterwards, we show how to transform more
complicated loop structures to simple (possibly non-linear) loops via chaining
and partial deletion, a new technique which is specific to non-linear ITSs.
To understand the idea of metering functions for non-linear loops, let s0 −→P
. . . −→P sm be a rewrite sequence and let πi be the position of the rewrite step
si −→P si+1. Then we say that the rewrite step sj −→P sj+1 is the predecessor
of si −→P si+1 if j is the maximal index such that j < i and πj ≤ πi.
If P is a linear ITS, then this notion of “predecessor” yields a string of rewrite
steps: Every rewrite step except for the first one has one and only one pre-
decessor and every rewrite step except for the last one has one and only one
successor. Metering functions under-estimate the length of such strings. If P is
a non-linear ITSs, then this notion of “predecessor” yields a tree of rewrite steps:
Every rewrite step except for the first one has one and only one predecessor,
but every rewrite step may have several successors. The idea of the extension
of metering functions to non-linear loops is to under-estimate the length of the
shortest paths in such trees instead of the length of rewrite sequences. Hence,
if b is a metering function for a simple non-linear loop α of degree d, then the
maximal number of consecutive applications of α is in Ω(db).

Definition 4.23 (Metering Function for Possibly Non-Linear Loops). Let

α = f(x) c−→
d∑
i=1

f(x)ηi [ϕ]

be a simple (possibly non-linear) loop. We call b ∈ T (ΣZ,V) a metering
function for α if the following conditions hold:

¬guard(α) =⇒ b ≤ 0 (4.11)
guard(α) =⇒ bηi ≥ b− 1 for all i ∈ {1, . . . , d} (4.12)

Note that Definition 4.23 is a generalization of Definition 4.13, i.e., if α is linear,
then Definition 4.23 and Definition 4.13 coincide.
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Example 4.24 (Metering Function for Fibonacci). According to Defini-
tion 4.23, 1

2 · x − 1 is a metering function for the recursive Fibonacci rule
from Example 4.5. It satisfies (4.11), as we have x ≤ 1 =⇒ 1

2 · x − 1 ≤ 0.
The recursive call fib(x− 1) satisfies (4.12), since we have

x > 1 =⇒ 1
2 · (x− 1)− 1 = 1

2 · x−
3
2 ≥

1
2 · x− 2.

Finally, the recursive call fib(x− 2) also satisfies (4.12), since we have

x > 1 =⇒ 1
2 · (x− 2)− 1 = 1

2 · x− 2 ≥ 1
2 · x− 2.

While a metering function for a linear loop α immediately gives rise to a lower
bound on the number of consecutive applications of α, this is not the case for
non-linear loops. The following theorem clarifies the relation between metering
functions for non-linear loops and the length of rewrite sequences.

Theorem 4.25 (From Metering Functions to Rewrite Sequences). Let b be
a metering function for a well-formed simple non-linear loop α with degree
d. Then for all integer substitutions σ with σ |= guard(α) there is a rewrite
sequence lhs(α)σ −→nα t with n = dd

bσ−1
d−1 e.

Proof. First note that we have d > 1 since α is non linear and hence n is
well defined. As in the proof of Theorem 4.14, let mσ be the length of the
longest rewrite sequence which starts with lhs(α)σ and σ-preserves T V. The
case mσ = ω is trivial. For the case mσ 6= ω, we use induction on mσ.
The case mσ = 0 is trivial. For the case mσ > 0, note that σ |= guard(α)
implies lhs(α)σ −→α rhs(α)σ =

∑d
i=1 lhs(α)ηiσ. (Recall that we have rhs(α) =∑d

i=1 lhs(α)ηi due to the assumption (4.3) in Section 4.1.) Let η = ηi for some
i ∈ {1, . . . , d}. Clearly, we have mη�σ < mσ.

Case 1. η � σ |= guard(α)
In this case, the induction hypothesis implies that there is a rewrite sequence
lhs(α)ησ −→n

′
η
α t′ with n′η = dd

bησ−1
d−1 e. Since (4.12) implies bησ ≥ bσ − 1, we

get n′η ≥ dd
bσ−1−1
d−1 e. Thus we get

rhs(α)σ =
d∑
i=1

lhs(α)ηiσ −→n
′′

α t′′

with

n′′ =
∑d
i=1 n

′
ηi ≥ d · dd

bσ−1−1
d−1 e ≥ dd

bσ−d
d−1 e

= dd
bσ−1−(d−1)

d−1 e = dd
bσ−1
d−1 e − 1 = n− 1.
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Thus we have lhs(α)σ −→1+n′′
α t′′ with 1 + n′′ ≥ n and hence lhs(α)σ −→nα t for

some term t.

Case 2. η � σ 6|= guard(α)
Then (4.11) implies bησ ≤ 0 and hence we get bσ ≤ 1 due to (4.12). Hence
we have n = dd

bσ−1
d−1 e ≤ d

d−1
d−1e = 1. Thus, the rewrite sequence lhs(α)σ −→α

rhs(α)σ has at least length n.

Example 4.26 (Under-Estimating Fibonacci). Since 1
2 · x− 1 is a metering

function for the recursive Fibonacci rule from Example 4.5, each term fib(x)σ
where σ |= x > 1 admits a rewrite sequence of length d2 1

2 ·xσ−1 − 1e.

Using Definition 4.23 and Theorem 4.25, we can finally accelerate non-linear
loops.

Theorem 4.27 (Accelerating Non-Linear Loops). Let P be a well-formed
ITS, let α ∈ P be a simple non-linear loop such that

guard(α) =⇒ cost(α) ≥ 1, (4.13)

and let b be a metering function for α. Moreover, let sink be a fresh function
symbol, let

α′ = lhs(α) c−→ sink(0, . . . , 0) [guard(α)] where c = db − 1
d− 1 ,

and let P ′ = P ∪ {α′}. Then P ′ is well-formed and the processor mapping
cp(P) to cp(P ′) is equivalent.

Proof. Soundness for upper bounds is trivial and P ′ is trivially well formed. To
prove soundness for lower bounds, note that by Theorem 4.25 σ |= guard(α)
implies lhs(α)σ k−→nσα t with n = dd

b−1
d−1 e for some costs k and some term t.

Since guard(α) =⇒ cost(α) ≥ 1, we get k ≥ nσ and thus k ≥ cσ, as we
clearly have nσ ≥ cσ. Thus, for every rewrite step with α′, there is a rewrite
sequence with α which has at least the same costs. Since sink(0, . . . , 0) is a
normal form, this implies soundness for lower bounds.

Example 4.28 (Accelerating Fibonacci). Since the recursive Fibonacci rule
from Example 4.5 has cost 1, (4.13) is trivially satisfied. Thus, accelerating
the recursive Fibonacci rule yields

fib(x) 2
1
2 ·x−1−1−−−−−−→ sink(0) [x > 1].
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Theorem 4.27 is useful to handle programs with non-linear recursion like Fi-
bonacci. Apart from non-linear recursion, non-linear ITSs can also be used to
modularize programs by extracting auxiliary functions.

Example 4.29 (Modular ITSs). In the following ITS, the auxiliary function
fac computes the factorial of its argument, i.e., fac(x) computes x!. Using
fac, facSum(x) computes 0! + . . .+ x!.

f0(x) 1−→ facSum(x)
facSum(x) 1−→ facSum(x− 1) + fac(x) [x > 0]
facSum(x) 1−→ 1 [x = 0]
fac(x) 1−→ x · fac(x− 1) [x > 1]
fac(x) 1−→ 1 [0 ≤ x ≤ 1]

To establish our assumptions from Section 4.1, we can transform it to the
following ITS PfacSum without affecting its runtime complexity:

f0(x) 1−→ facSum(x)
facSum(x) 1−→ facSum(x− 1) + fac(x) [x > 0]
facSum(x) 1−→ sink(0) [x = 0]
fac(x) 1−→ fac(x− 1) [x > 1]
fac(x) 1−→ sink(0) [0 ≤ x ≤ 1]

To analyze PfacSum, we first accelerate and chain the recursive fac rule as in
Theorem 4.17 and Theorem 4.22.

Example 4.30 (Accelerating fac). Clearly, x− 1 is a metering function for
the recursive fac rule from PfacSum. Accelerating it yields

fac(x) tv−→ fac(x− tv) [x > 1 ∧ 0 < tv < x].

Chaining this rule with the non-recursive fac rule yields

fac(x) tv+1−−−→ sink(0) [x > 1 ∧ 0 < tv < x ∧ 0 ≤ x− tv ≤ 1]

which simplifies to
fac(x) x−→ sink(0) [x > 1].

By deleting the original fac rules, we obtain the following ITS:

f0(x) 1−→ facSum(x)
facSum(x) 1−→ facSum(x− 1) + fac(x) [x > 0]
facSum(x) 1−→ sink(0) [x = 0]
fac(x) x−→ sink(0) [x > 1]

At this point, we would like to chain the recursive facSum rule with the fac
rule in order to inline the call to fac. However, Theorem 4.22 is only applicable
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Chapter 4. Lower Bounds for ITSs

to linear rules, but the recursive facSum rule is non-linear. Hence, we now
generalize Theorem 4.22 to non-linear rules.

Theorem 4.31 (Chaining). Let P be a well formed ITS and let α1, α2 ∈ P
where

α1 = f1(x) c1−→ C[f2(x)η1] [ϕ1] and
α2 = f2(x) c2−→ r [ϕ2].

W.l.o.g., let T V(α1)∩T V(α2) = ∅ (otherwise, the temporary variables in α2
can be renamed accordingly). Moreover, let

α1.2 = f1(x) c1+c2η1−−−−−→ C[rη1] [ϕ1 ∧ ϕ2η1]

and let P ′ = P ∪ {α1.2}. Then P ′ is well formed and the processor mapping
cp(P) to cp(P ′) is equivalent.

Proof. Soundness for upper bounds is trivial. It remains to show that P ′ is well
formed and that the processor is sound for lower bounds. To this end, we show
that every evaluation step with α1.2 can be simulated by two evaluation steps
with the rules α1, α2 of the same cost. Thus, let σ be an integer substitution
with σ |= guard(α1.2), i.e., we have

f1(x)σ c1σ+c2η1σ−−−−−−−→α1.2
C[rη1]σ.

Since σ |= ϕ1, we have

f1(x)σ c1σ−−→α1
C[f2(x)η1]σ.

Since σ |= ϕ2η1 implies η1 � σ |= ϕ2 we have

f2(x)η1σ
c2η1σ−−−→α2

rη1σ

and hence
C[f2(x)η1]σ c2η1σ−−−→α2

C[rη1]σ.

Thus, we have f1(x)σ c1σ+c2η1σ−−−−−−−→2
P C[rη1]σ as desired.

Theorem 4.31 allows us to continue Example 4.30.

Example 4.32 (Chaining facSum and fac). Chaining the recursive facSum
rule from Example 4.30 with the fac rule yields

facSum(x) x+1−−−→ facSum(x− 1) + sink(0) [x > 1].

At this point, we would like to accelerate the recursive facSum rule. However, it
is neither a simple loop (since its right-hand side is not linear) nor a simple non-
linear loop (since its right-hand side contains two different function symbols).
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The following theorem allows us to transform such rules to simple (non-linear)
rules by deleting subterms of the right-hand side.

Theorem 4.33 (Partial Deletion). Let P be a well-formed ITS and let α ∈ P
be a rule with rhs(α) =

∑m
i=1 fi(x)ηi where f1, . . . , fm ∈ Σ. Moreover, let α′

be like α, but rhs(α′) =
∑
i∈{1,...,m}\{j} fi(x)ηi for some j ∈ {1, . . . ,m}, and

let P ′ = P ∪ {α′}. Then P ′ is well formed and the processor mapping cp(P)
to cp(P ′) is sound for lower bounds.

Proof. Since P is well formed, P ′ is trivially well formed, too. In the following,
let X ,Y denote multisets of int-basic terms. Moreover, for convenience we
identify the multiset X with the term

∑
t∈X t. To prove soundness for lower

bounds, we define X k−→P◦⊇ Y if X k−→P ◦ ⊇ Y. Then we clearly have dh−→
P′
≤

dh−→P◦⊇ as each −→P′-sequence is also a valid −→P◦⊇-sequence. To finish the
proof, we show dh−→P◦⊇ ≤ dh−→P . This clearly implies rccp(P) ≤ rccp(P′), i.e.,
it implies that the processor is sound for lower bounds.
Consider an evaluation X0

k1−−→P◦⊇ . . .
kn−−→P◦⊇ Xn. We prove

X0
k1−−→P . . .

kn−−→P X ′n ⊇ Xn for some X ′n

by induction on n. The case n = 0 is trivial. If n > 0, the induction hypothesis
implies

X0
k1−−→P . . .

kn−1−−−→P X ′n−1 ⊇ Xn−1 for some X ′n−1.

Moreover,
Xn−1

kn−−→P◦⊇ Xn implies Xn−1
kn−−→P Xn ⊇ Xn,

i.e., we have t kn−−→P Y and Xn = (Xn−1 \ {t}) ∪ Y for some t ∈ Xn−1. Since
Xn−1 ⊆ X ′n−1, we get

X ′n−1
kn−−→P

(
X ′n−1 \ {t}

)
∪ Y = X ′n

and thus X0
k1−−→P . . .

kn−−→P X ′n ⊇ X ′n with X ′n ⊇ Xn ⊇ Xn, as desired.

Example 4.34 (Applying Partial Deletion to facSum). Applying Theo-
rem 4.33 to the call to sink in the recursive facSum rule from Example 4.32
yields

facSum(x) x+1−−−→ facSum(x− 1) [x > 1].

Accelerating this rule via Theorem 4.17 with the metering function x − 1
yields

facSum(x)
x·tv− 1

2 ·tv2+ 3
2 ·tv−−−−−−−−−−−→ facSum(x− tv) [x > 1 ∧ 0 < tv < x] (4.14)
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since xηtv = x− tv and

tv−1∑
i=0

xηi + 1 =
tv−1∑
i=0

x− i+ 1 = x · tv − 1
2 · tv

2 + 3
2 · tv.

By chaining (4.14) with the f0 rule, we obtain

f0(x)
1+x·tv− 1

2 ·tv2+ 3
2 ·tv−−−−−−−−−−−−−→ facSum(x− tv) [x > 1 ∧ 0 < tv < x].

Finally, deleting all other rules results in a simplified ITS. Section 4.5 shows
how to analyze the complexity of such simplified ITSs.

Algorithm 2 shows how Algorithm 1 can be adapted in order to handle non-linear
ITSs. The first additional step is Step 2, which deletes sinks from right-hand
sides as in Example 4.34. The second change is that we apply Partial Deletion
if we failed to accelerate a non-linear loop in Step 3.2. In this way, the degree
of the loop is reduced, which may simplify its acceleration. In this step, it is
not clear which subterm of the right-hand side should be deleted. Here one may
for example try all possibilities until the loop can be accelerated successfully.
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4.4. Non-Linear ITSs

Algorithm 2 Program Simplification for Non Linear ITSs
While there is a rule α with root(α) 6= f0:

1. Apply Deletion to rules whose guard is proved unsatisfiable or whose root
symbol is unreachable from f0.

2. While there is a rule α whose right-hand side contains a symbol f without
outgoing rules:
2.1. Apply Partial Deletion to an occurrence of f in rhs(α).
2.2. Apply Deletion to α.

3. While there is a non-accelerated simple loop α:
3.1. Try to apply Loop Acceleration to α.
3.2. If 3.1 failed:

If T V(α) 6= ∅, then apply Strengthening to α to eliminate a tempo-
rary variable.
Otherwise, if α is non-linear, apply Partial Deletion to α.

3.3. Apply Deletion to α.
4. Let S = ∅.
5. While there is an accelerated rule α:

5.1. For each α′ where rhs(α′) contains root(α) but not root(α′):
Apply Chaining to α′ and α.
Add α′ to S.

5.2. Apply Deletion to α.
6. Apply Deletion to each rule in S.
7. While there is a function symbol f without simple loops but with incoming

and outgoing rules (starting with symbols f with just one incoming rule):
7.1. Apply Chaining to each pair α′, α where root(α) = f and f occurs

on the right-hand side of α′.
7.2. Apply Deletion to each α where root(α) = f or rhs(α) contains no

function symbols from Σ except for f.

67
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After Algorithm 2, all program paths have length 1. We call such programs
simplified and throughout this section we assume that P is a simplified program.
Now for any integer substitution σ,

max{cost(α)σ | α ∈ P, σ |= guard(α)}, (4.15)

is a lower bound on dh−→P (f0(x)σ), i.e., (4.15) is the maximal cost of those rules
whose guard is satisfied by σ. So for the program in Figure 4.3c, we obtain the
bound

x2 · tv + x · tv − tv2 + 3 · tv + 2 · x+ 4
2 (4.16)

for all integer substitutions with σ |= 0 < tv < 1
2 · x

2 + 1
2 · x. However, such

bounds do not provide an intuitive understanding of the program’s complexity
and are also not suitable to detect possible attacks. The reason is that both
cost(α) and guard(α) may be complex and, even more importantly, they may be
interdependent. For example, the bound (4.16) is cubic, but it even witnesses
that the complexity of the program from Figure 4.3c is at least a polynomial
of degree 4. The reason is that the value of the temporary variable tv may be
quadratic in the value of the program variable x according to the condition
tv < 1

2 · x
2 + 1

2 · x.
Hence, we now show how to derive asymptotic lower bounds for simplified
programs. These asymptotic bounds can easily be understood (i.e., a high
lower bound can help programmers to improve their program to make it more
efficient) and they identify potential attacks.
To derive asymptotic bounds, we use so-called limit problems, cf. Section 4.5.1.
A limit problem is an abstraction of the guard ϕ of a rule which allows us to
analyze how to satisfy ϕ, presuming that all variables are instantiated with
“large enough” values. More precisely, a solution of a limit problem is a family of
substitutions σm which is parameterized by a single variable m. This family of
substitutions satisfies ϕ for large enough m and can be found using the calculus
presented in Section 4.5.2. Thus, applying σm to the cost of a rule yields a
univariate bound, even if the rule has a multivariate cost function and hence
allows us to deduce an asymptotic bound.

4.5.1 Limit Problems

While dh−→P is defined on terms, asymptotic bounds are usually defined for
functions on N. Thus, our goal is to derive an asymptotic lower bound for
rccp(P) from a concrete bound on dh−→P of the form (4.15). So for the program
P in Figure 4.3c, we would like to derive rccp(P)(n) ∈ Ω(n4). However, as
discussed above, in general the costs of a rule do not directly give rise to the
desired asymptotic lower bound.
To infer an asymptotic lower bound from a rule α ∈ P, we try to find an
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4.5. Asymptotic Lower Bounds

infinite family of integer substitutions σm (parameterized by m ∈ N) such
that there is an m0 ∈ N with σm |= guard(α) for all m ≥ m0. This implies
rccp(P)(‖f0(x)σm‖i) ∈ Ω(cost(α)σm), since for all m ≥ m0 we have

rccp(P)(‖f0(x)σm‖i) ≥ dh−→P (f0(x)σm) ≥ cost(α)σm.

To find such a family of substitutions, we first normalize all constraints in
guard(α) such that they have the form a > 0 or a ≥ 0. Now our goal is to
find infinitely many models σm for a formula of the form “

∧k
i=1 ai ◦ 0” where

◦ ∈ {>,≥}. Obviously, such a formula is satisfied for large enough m if all
terms aiσm are positive constants or increase infinitely towards ω. Thus, we
introduce a technique which tries to find out whether fixing the valuations of
some variables and increasing or decreasing the valuations of others results in
positive resp. increasing valuations of a1, . . . , ak. Our technique operates on
limit problems of the form {a•1

1 , . . . , a
•k
k } where ai is an airthmetic expression

and •i ∈ {+,−,+!,−!} for all i ∈ {1, . . . , k}. Here, a+ (resp. a−) means that
a has to grow towards ω (resp. −ω) and a+! (resp. a−!) means that a has to
be a positive (resp. negative) constant. So we represent guard(α) by an initial
limit problem {a•1

1 , . . . , a
•k
k } where •i ∈ {+,+!} for all i ∈ {1, . . . , k}. To solve

a limit problem S, we search for a solution σm of S, which is defined in terms
of limits of functions.

Definition 4.35 (Limit). For each f : N → R we have limn 7→ω f(n) = ω

(resp. limn 7→ω f(n) = −ω) if for every m ∈ R there is an n0 ∈ N such
that f(n) ≥ m (resp. f(n) ≤ m) holds for all n ≥ n0. Similarly, we have
limn7→ω f(n) = m if there is an n0 such that f(n) = m holds for all n ≥ n0.

Now a family of substitutions σm is a solution for a limit problem {a•1
1 , . . . , a

•k
k }

if limm 7→ω aiσm complies with •i for each i ∈ {1, . . . , k}.

Definition 4.36 (Solutions of Limit Problems). For any function f : N→ R
and any • ∈ {+,−,+!,−!}, we say that f satisfies • if:

limm 7→ω f(m) = ω, if • = + ∃c ∈ R. limm 7→ω f(m) = c > 0, if • = +!
limm 7→ω f(m) = −ω, if • = − ∃c ∈ R. limm 7→ω f(m) = c < 0, if • = −!

A family σm of integer substitutions is a solution of a limit problem S if for
every a• ∈ S, the function λm. aσm satisfies •.

Example 4.37 (Bound for Figure 4.3c). Consider the initial limit problem
S = {tv+, ( 1

2 · x
2 + 1

2 · x − tv)+!)} for Figure 4.3c. It is solved by σm with
(tv)σm = 1

2 ·m
2+ 1

2 ·m−1, xσm = m and yσm = zσm = uσm = 0. The reason
is that limm7→ω λm. (tv)σm = ω, i.e., limm 7→ω(tv)σm satisfies +. Similarly,
λm. ( 1

2 · x
2 + 1

2 · x− tv)σm = λm. 1 satisfies +!.
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Section 4.5.2 will show how to infer such solutions of limit problems automati-
cally. The following theorem clarifies how to deduce an asymptotic lower bound
from a solution of a limit problem.

Theorem 4.38 (Asymptotic Bounds for Simplified Programs). Given a rule
α of a simplified program P with guard(α) = a1 ◦1 0 ∧ · · · ∧ ak ◦k 0 where
◦1, . . . , ◦k ∈ {>,≥}, let the family σm be a solution of an initial limit prob-
lem {a•1

1 , . . . , a
•k
k } with •1, . . . , •k ∈ {+,+!}. Then rccp(P)(‖lhs(α)σm‖i) ∈

Ω(cost(α)σm).

Proof. Since σm is a solution of {a•1
1 , . . . , a

•k
k }, there is an m0 ∈ N such that for

all m ≥ m0, we have σm |= a1 > 0 ∧ · · · ∧ ak > 0, i.e., σm |= guard(α). Hence,
for all m ≥ m0, we obtain:

rccp(P)(‖lhs(α)σm‖i) ≥ dh−→P (lhs(α)σm)
≥ cost(α)σm as σm |= guard(α)

This implies rccp(P)(‖lhs(α)σm‖i) ∈ Ω(cost(α)σm).

Of course, if P has several rules, then we try to take the one which results in
the highest lower bound. Moreover, one should extend the initial limit problem
{a•1

1 , . . . , a
•k
k } by cost(α)+. In this way, one searches for families of substitutions

σm where cost(α)σm depends on m, i.e., where the costs are not constant.

Example 4.39 (Asymptotic Bound for Figure 4.3c). We continue Exam-
ple 4.37. According to Theorem 4.38, we get the asymptotic lower bound

rccp(P)(‖f0(x, y, z, u)σm‖i) ∈ Ω(cost(α)σm)
= Ω( 1

8 ·m
4 + 1

4 ·m
3 + 7

8 ·m
2 + 7

4 ·m)
= Ω(m4).

The costs are unbounded (i.e., they only depend on temporary variables) if the
initial limit problem {a•1

1 , . . . , a
•k
k , cost(α)+} has a solution σm where xσm is

constant for all x ∈ PV. Then we can even infer rccp(P)(m) ∈ Ω(ω).

Example 4.40 (Unbounded Loops Continued). By chaining the rule αit
from Example 4.19 with the initial rule f0(x, y) 1−→ f(x, y) (see Example 4.16),
we obtain

f0(x, y) tv1·y+1−−−−−→ f(x+ tv1, y) [0 < x ∧ 0 < tv1 < tv + 1].

The resulting initial limit problem {x+! , (tv1)+, (tv +1− tv1)+! , (tv1 ·y+1)+}
has the solution σm with xσm = yσm = 1 and (tv)σm = (tv1)σm = m, which
implies rccp(P)(m) ∈ Ω(ω).
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Theorem 4.38 results in bounds “rccp(P)(‖lhs(α)σm‖i) ∈ Ω(cost(α)σm)” which
depend on the sizes ‖lhs(α)σm‖i. Let f(m) = rccp(P)(m), g(m) = ‖lhs(α)σm‖i,
and let Ω(cost(α)σm) have the form Ω(mk) or Ω(km) for some k ∈ N. Moreover
for all x ∈ PV, let xσm be a polynomial of at most degree d, i.e., let g(m) ∈
O(md). Then the following lemma allows us to infer a bound for rccp(P)(m)
instead of rccp(P)(‖lhs(α)σm‖i). Here, we use the notation R◦c = {x ∈ R | x◦c}
for ◦ ∈ {≥, >} (and N◦c is defined analogously).

Lemma 4.41 (Bounds for Function Composition). Let f : N → R≥0 and
g : N → N where g(m) ∈ O(md) for some d ∈ N with d > 0. Moreover, let
f(m) be weakly and let g(m) be strictly monotonically increasing for large
enough m.

• If f(g(m)) ∈ Ω(mk) with k ∈ N, then f(m) ∈ Ω(m k
d ).

• If f(g(m)) ∈ Ω(km) with k > 1, then f(m) ∈ Ω(b d
√
m) for some b > 1.

Proof. For any (total) function h : M → N≥m0 with M ⊆ N where M is infinite,
we define bhc(m) : N≥min(M) → N≥m0 and dhe(m) : N→ N≥m0 by:

bhc(m) = h(max{m′ ∈M | m′ ≤ m})
dhe(m) = h(min{m′ ∈M | m′ ≥ m})

Note that infinity of h’s domain of definition M ensures that there is always
an m′ ∈M with m′ ≥ m.
To prove the lemma, we first show that if h : M → N≥m0 is strictly monotoni-
cally increasing and surjective, then

bhc(m) ∈ {dhe(m), dhe(m)− 1} for all m ∈ N≥min(M) (4.17)

Then we prove the case f(g(m)) ∈ Ω(mk). The proof for the case f(g(m)) ∈
Ω(km) is analogous and thus it is only presented in the appendix of this thesis,
cf. Appendix A.

Claim 1. bhc(m) ∈ {dhe(m), dhe(m)− 1}
To prove (4.17), let m ∈ N≥min(M). If m ∈M , then clearly bhc(m) = dhe(m).
Ifm /∈M , then let m̌ = max{x ∈M | x < m} and m̂ = min{x ∈M | x > m}.
Thus, m̌ < m < m̂. Strict monotonicity of h implies h(m̌) < h(m̂). Assume
that h(m̂) − h(m̌) > 1. Then by surjectivity of h, there is an m ∈ M with
h(m) = h(m̌) + 1 and thus h(m̌) < h(m) < h(m̂). By strict monotonicity of
h, we obtain m̌ < m < m̂. Since m /∈ M and m ∈ M implies m 6= m, we
either have m < m which contradicts m̌ = max{m̌ ∈M | m̌ < m} or m > m

which contradicts m̂ = min{m̂ ∈ M | m̂ > m}. Hence, bhc(m) = h(m̌) =
h(m̂)− 1 = dhe(m)− 1, which proves (4.17).

71



Chapter 4. Lower Bounds for ITSs

Claim 2. f(g(m)) ∈ Ω(mk) implies f(m) ∈ Ω(m k
d )

Note that g(m) ∈ O(md) and f(g(m)) ∈ Ω(mk) imply

∃m0, c, c
′ > 0.∀m ∈ N≥m0 . g(m) ≤ c ·md ∧ c′ ·mk ≤ f(g(m)).

We can choose m0 large enough such that f |N≥m0
is weakly and g|N≥m0

is strictly monotonically increasing. Let M = {g(m) | m ≥ m0} and let
g−1 : M → N≥m0 be the function such that g(g−1(m)) = m. Note that g−1

exists, since strict monotonicity of g implies injectivity of g. By instantiating
m with g−1(m), we obtain

∃m0, c, c
′ > 0.∀m ∈M.

g(g−1(m)) ≤ c · (g−1(m))d ∧ c′ · (g−1(m))k ≤ f(g(g−1(m)))

which simplifies to

∃m0, c, c
′ > 0.∀m ∈M.m ≤ c · (g−1(m))d ∧ c′ · (g−1(m))k ≤ f(m).

When dividing by c and building the dth root on both sides of the first
inequality, we get

∃m0, c, c
′ > 0.∀m ∈M. d

√
m

c
≤ g−1(m) ∧ c′ · (g−1(m))k ≤ f(m).

By monotonicity of d
√

m
c and f(m) in m, this implies

∃m0, c, c
′ > 0.∀m ∈ N≥g(m0).

d

√
m

c
≤ dg−1e(m) ∧ c′ · (bg−1c(m))k ≤ f(m).

Note that g|N≥m0
is total and hence, g−1 : M → N≥m0 is surjective. More-

over, by strict monotonicity of g|N≥m0
, M is infinite and g−1 is also strictly

monotonically increasing. Hence, by (4.17) we get dg−1e(m) ≤ bg−1c(m) + 1
for all m ∈ N≥g(m0). Thus,

∃m0, c, c
′ > 0.∀m ∈ N≥g(m0).

d

√
m

c
−1 ≤ bg−1c(m)∧c′ ·(bg−1c(m))k ≤ f(m)

which implies

∃m0, c, c
′ > 0.∀m ∈ N≥g(m0). c

′ ·
(

d

√
m

c
− 1
)k
≤ f(m).

Therefore, ∃c > 0. f(m) ∈ Ω
((

d
√

m
c − 1

)k) and thus, f(m) ∈ Ω
(
m

k
d

)
.
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Example 4.42 (Bound for Figure 4.3c Continued). In Example 4.39, we
inferred rccp(P)(‖f0(x, y, z, u)σm‖i) ∈ Ω(m4) where xσm = m and yσm =
zσm = uσm = 0. Hence, we have ‖f0(x, y, z, u)σm‖i = m ∈ O(m1). By
Lemma 4.41, we obtain rccp(P)(m) ∈ Ω(m 4

1 ) = Ω(m4).

In some cases, Lemma 4.41 even allows us to infer sub-linear bounds.

Example 4.43 (Sub-Linear Bounds). Let

P =
{

f0(x, y) y−→ f(x, y)
[
x > y2]}.

By Definition 4.36, the family σm with xσm = m2 + 1 and yσm = m is a
solution of the initial limit problem {(x− y2)+! , y+}. Due to Theorem 4.38,
this proves rccp(P)(‖f0(x, y)σm‖i) ∈ Ω(m). As ‖f0(x, y)σm‖i = m2 + 1 +m ∈
O(m2), Lemma 4.41 results in rccp(P)(m) ∈ Ω(m 1

2 ) = Ω(
√
m).

4.5.2 Transforming Limit Problems

A limit problem S is trivial if all terms in S are variables and there is no
variable x with x•1 , x•2 ∈ S and •1 6= •2. For trivial limit problems S we
can immediately obtain a particular solution σSm which instantiates variables
“according to S”.

Lemma 4.44 (Solving Trivial Limit Problems). Let S be a trivial limit
problem. Then σSm is a solution of S where for all m ∈ N, σSm is defined as
follows:

xσSm =



m if x+ ∈ S
−m if x− ∈ S

1 if x+! ∈ S
−1 if x−! ∈ S

0 otherwise

Proof. If x+ ∈ S (resp. x− ∈ S), then xσSm = m (resp. xσSm = −m) and thus,
limm7→ω xσm = limm 7→ωm = ω (resp. limm7→ω xσm = limm 7→ω −m = −ω), i.e.,
λm. xσm satisfies + (resp. −). If x+! ∈ S (resp. x−! ∈ S), then xσSm = 1
(resp. xσSm = −1). Thus, limm 7→ω xσm = 1 (resp. limm 7→ω xσm = −1), i.e.,
λm. xσm satisfies +! (resp. −!). Hence, σSm is a solution of S.

For instance, if V(α) = {x, y, tv} and S = {x+, y−!}, then S is a trivial limit
problem and σSm with xσSm = m,xσSm = −1, and (tv)σSm = 0 is a solution for S.
However, in general the initial limit problem S = {a•1

1 , . . . , a
•k
k , cost(α)+} is not

trivial. Therefore, we now define a transformation to simplify limit problems
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until one reaches a trivial problem. With our transformation, S  S′ ensures
that each solution of S′ also gives rise to a solution of S.
If S contains f(a1, a2)• for some standard arithmetic operation f like addition,
subtraction, multiplication, division, and exponentiation, we use a so-called
limit vector (•1, •2) with •i ∈ {+,−,+!,−!} to characterize for which kinds of
arguments the operation f is increasing (if • = +) resp. decreasing (if • = −)
resp. a positive or negative constant (if • = +! or • = −!).2 Then S can be
transformed into the new limit problem S \ {f(a1, a2)•} ∪ {a•1

1 , a
•2
2 }.

For example, (+,+!) is an increasing limit vector for subtraction. The reason
is that a1 − a2 is increasing if a1 is increasing and a2 is a positive constant.
Hence, our transformation  allows us to replace (a1 − a2)+ by a+

1 and a+!
2 .

To define limit vectors formally, we say that (•1, •2) is an increasing (resp. de-
creasing) limit vector for f if the function λm. f(g(m), h(m)) satisfies + (resp.−)
for any functions g and h that satisfy •1 and •2, respectively. Similarly, (•1, •2)
is a positive (resp. negative) limit vector for f if λm. f(g(m), h(m)) satisfies +!
(resp. −!) for any functions g and h that satisfy •1 and •2, respectively.
With this definition, (+,+!) is indeed an increasing limit vector for subtrac-
tion, since limm 7→ω g(m) = ω and limm 7→ω h(m) = k with k > 0 implies
limm 7→ω(g(m) − h(m)) = ω. In other words, if g(m) satisfies + and h(m)
satisfies +!, then g(m) − h(m) satisfies + as well. In contrast, (+,+) is not
an increasing limit vector for subtraction. To see this, consider the functions
g(m) = h(m) = m. Both g(m) and h(m) satisfy +, whereas g(m)− h(m) = 0
does not satisfy +. Similarly, (+!,+!) is not a positive limit vector for subtrac-
tion, since for g(m) = 1 and h(m) = 2, both g(m) and h(m) satisfy +!, but
g(m)− h(m) = −1 does not satisfy +!.
Limit vectors can be used to simplify limit problems, cf. (A) in the following
definition. Moreover, for numbers k ∈ Z, one can easily simplify constraints of
the form k+! and k−! (e.g., 2+! is obviously satisfied since 2 > 0), cf. (B).

Definition 4.45 ( ). Let S be a limit problem. We have:

(A) S ∪ {f(a1, a2)•} S ∪ {a•1
1 , a

•2
2 } if • is + (resp. −,+!,−!) and (•1, •2)

is an increasing (resp. decreasing, positive, negative) limit vector for f

(B) S ∪ {k+!} S if k ∈ Z and k > 0, S ∪ {k−!} S if k ∈ Z and k < 0

However, transforming a limit problem with may also result in contradictory
limit problems that contain x•1 and x•2 where •1 6= •2, as the following example
illustrates.

2To ease the presentation, we restrict ourselves to binary operations f . For operations of
arity n, one would need limit vectors of the form (•1, . . . , •n).
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Example 4.46 (Bound for Figure 4.3c Continued). For the initial limit
problem from Example 4.37, we have

{tv+, ( 1
2 · x

2 + 1
2 · x− tv)+!}  {tv+, ( 1

2 · x
2 + 1

2 · x)+! , tv−!}
 {tv+, ( 1

2 · x
2)+! , ( 1

2 · x)+! , tv−!}
 ∗ {tv+, x+! , tv−!}

using the positive limit vector (+!,−!) for subtraction and the positive limit
vector (+!,+!) for addition.

The resulting problem in Example 4.46 is not trivial as it contains tv+ and
tv−! , i.e., we failed to compute an asymptotic lower bound. However, if we
substitute tv with its upper bound 1

2 · x
2 + 1

2 · x − 1, then we can reduce the
initial limit problem to a trivial one. Hence, we now extend  by allowing to
apply substitutions.

Definition 4.47 ( Continued). Let S be a limit problem and let θ be a
substitution such that x /∈ V(xθ) for all x ∈ dom(θ) and θ � σ is an integer
substitution for each integer substitution σ. Then we have:3

(C) S θ Sθ

Example 4.48 (Bound for Figure 4.3c Continued). For the initial limit
problem from Example 4.37, we now have

{tv+, ( 1
2 · x

2 + 1
2 · x− tv)+!}

{tv/ 1
2 ·x

2+ 1
2 ·x−1}

{( 1
2 · x

2 + 1
2 · x− 1)+, 1+!}

 {( 1
2 · x

2 + 1
2 · x− 1)+}

 {( 1
2 · x

2 + 1
2 · x)+, 1+!}

 ∗ {x+}

i.e., we obtain the trivial limit problem {x+}. Note that, given an integer
substitution σ, {tv/ 1

2 · x
2 + 1

2 · x − 1} � σ is indeed an integer substitution,
since 1

2 · x
2 + 1

2 · x− 1 ∈ Z for each x ∈ Z.

While Definition 4.47 requires that variables may only be instantiated by integer
terms, it is also useful to handle limit problems that contain non-integer terms.

Example 4.49 (Non-Integer Metering Functions Continued). By chaining
the accelerated rule from Example 4.18 with the only initial rule, we obtain
the rule

f0(x) tv+1−−−→ f(x− 2 · tv)
[
0 < tv < 1

2 · x+ 1
]
.

3The other rules for  are implicitly labeled with the identical substitution id.
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For the initial limit problem {tv+, ( 1
2 · x− tv + 1)+! , (tv + 1)+} we get

{tv+, ( 1
2 · x− tv + 1)+! , (tv + 1)+}  2 {tv+, ( 1

2 · x− tv + 1)+!}
{x/2·tv−1} {tv+, 1

2
+!}

 {tv+, 1+! , 2+!}
 2 {tv+}

using the positive limit vector (+!,+!) for division. This allows us to infer
rccp(P)(m) ∈ Ω(m).

So far, it is unclear how to check the side-condition that θ�σ has to be an integer
substitution for every integer substitution σ automatically. If the range of θ
consists of univariate polynomials, then we can exploit the following observation
from [33].

Lemma 4.50 (Polynomials Mapping to Z). Let f : Z→ R be a polynomial
of degree d such that f(i), f(i+ 1), . . . f(i+ d+ 1) ∈ Z for some i ∈ Z. Then
img(f) ⊆ Z.

Proof. We use induction on d. If d = 0, then f is a constant and thus the claim
is trivial. If d = n, then g(x) = f(x+ 1)− f(x) is a polynomial of degree d− 1.
Moreover, we have g(i), . . . , g(i + d) ∈ Z. Thus, by the induction hypothesis,
we have img(g) ⊆ Z. This means that we have f(x+1)−f(x) ∈ Z for all x ∈ Z.
Since we also have f(i) ∈ Z, this proves img(f) ⊆ Z.

Thus, if xθ is a univariate polynomial of degree d, then it suffices to check if
instantiating xθ with 0, . . . , d + 1 results in an integer. Moreover, xθ clearly
maps to Z if it neither contains division nor exponentiation. Thus, one can
implement Definition 4.47 by restricting θ to these cases (but, of course, one
may also incorporate further sufficient criteria).
However, up to now we cannot prove that, e.g., a rule α with guard(α) =
x2 − x > 0 and cost(α) = x has a linear lower bound, since (+,+) is not an
increasing limit vector for subtraction. To handle such cases, the following rules
allow us to neglect polynomial sub-expressions if they are “dominated” by other
polynomials of higher degree or by exponential sub-expressions.

Definition 4.51 ( Continued). Let S be a limit problem, let ± ∈ {+,−},
and let a, b, e be univariate polynomials. Then we have:

(D) S ∪ {(a± b)•} S ∪ {a•} if • ∈ {+,−} and the degree of a is greater
than the degree of b

(E) S ∪ {(ae ± b)+} S ∪ {(a− 1)•, e+} if • ∈ {+,+!}
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Thus,
{(x2 − x)+} {(x2)+} = {(x · x)+} {x+}

by the increasing limit vector (+,+) for multiplication. Similarly,

{(2x − x3)+} {(2− 1)+! , x+} {x+}.

Rule (E) can also be used to handle problems like (ae)+ (by choosing b = 0).

Example 4.52. We continue Example 4.28, where we obtain the initial limit
problem {(2 1

2 ·x−1 − 1)+, (x− 1)+}. We get:

{(2 1
2 ·x−1 − 1)+, (x− 1)+}  2 {(2 1

2 ·x−1 − 1)+, x+}
 {1+! , ( 1

2 · x− 1)+, x+}
 ∗ {x+}

Thus, the accelerated Fibonacci rule from Example 4.28 gives rise to a lower
bound in Ω(2 1

2 ·m−1 − 1) = Ω(2 1
2 ·m) = Ω(

√
2m) ⊂ Ω(1.4m).

Theorem 4.53 states that  is indeed correct. When constructing the solution
from the resulting trivial limit problem, one has to take the substitutions into
account which were used in the derivation.

Theorem 4.53 (Correctness of  ). If S θ S′ and the family σm is a
solution of S′, then θ � σm is a solution of S.

Proof. To prove the theorem, we consider Definition 4.45 (A) – (E) separately.

Claim 1. Definition 4.45 (A) is sound.
Assume that the step from S to S′ was done by Definition 4.45 (A). Since
σm is a solution for S′, it is a solution for a•1

1 and a•2
2 , where (•1, •2) is an

increasing (resp. decreasing, positive, or negative) limit vector for f . As σm is
a solution for both a•ii , the function λm. aiσm satisfies •i. By the definition of
limit vectors, this implies that λm. f(a1σm, a2σm) = λm. f(a1, a2)σm satisfies
•. Thus, σm is a solution for f(a1, a2)•.

Claim 2. Definition 4.45 (B) is sound.
If the step from S to S′ was done by Definition 4.45 (B), then every solution
σm for S′ is also a solution for S, since kσm = k holds for any k ∈ Z.

Claim 3. Definition 4.45 (C) is sound.
If the step from S to S′ was done by Definition 4.47 (C), then let σm be a
solution for S′ = Sθ. Then for every (aθ)• ∈ Sθ, λm. aθσm satisfies • and
hence θ � σm is a solution for a•. Thus, θ � σm is a solution for S.

Claim 4. Definition 4.45 (D) is sound.
If the step from S to S′ was done by Definition 4.51 (D), then let σm be a
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solution for a•. Since the only variable of the polynomial a is x, we must have
limm7→ω xσm = ω or limm7→ω xσm = −ω. W.l.o.g, let limm 7→ω xσm = ω and
• = + (the other cases work analogously). Then limm 7→ω aσm = ω implies
limx 7→ω a = ω. Since the degree of a is greater than the degree of b, this
means limx 7→ω a± b = ω and hence limm 7→ω(a± b)σm = ω.

Claim 5. Definition 4.45 (E) is sound.
For Definition 4.51 (E), the proof is analogous. Here for large enough m,
aeσm is an exponential function with a base > 1. Since σm is a solution for
e+, we again have limm7→ω xσm = ω or limm 7→ω xσm = −ω. Thus aeσm is
an exponential function which grows faster than bσm for m 7→ ω. Hence, we
obtain limm7→ω(ae ± b)σm = ω.

Example 4.54 (Bound for Figure 4.3c Continued). Example 4.48 leads
to the solution θ � σ′m of the initial limit problem for the program from
Figure 4.3c where θ = {tv/ 1

2 ·x
2 + 1

2 ·x−1}, xσ′m = m, and (tv)σ′m = yσ′m =
zσ′m = uσ′m = 0. Hence, θ � σ′m = σm where σm is as in Example 4.37. As
explained in Example 4.42, this proves rccp(P)(m) ∈ Ω(m4).

So we start with an initial limit problem S = {a•1
1 , . . . , a

•k
k , cost(α)+} that

represents guard(α) and requires non-constant costs, and transform S with
 into a trivial limit problem S′, i.e., S θ1 . . .

θk S′. For automation, one
should leave the •i in the initial problem S open, and only instantiate them
by a value from {+,+!} when this is needed to apply a particular rule for the
transformation  . Then the resulting family σS′m of valuations gives rise to a
solution σm = θ1 � θ2 � . . . � σS

′

m of S. Thus, we have rccp(P)(‖lhs(α)σm‖i) ∈
Ω(cost(α)σm), which leads to a lower bound for rccp(P)(m) with Lemma 4.41.
Our implementation uses the following strategy to apply the rules from Def-
initions 4.45, 4.47, and 4.51 for  . Initially, we reduce the number of vari-
ables by propagating bounds implied by the guard, i.e., if γ =⇒ x ≥ a

resp. γ =⇒ x ≤ a (but γ 6=⇒ x ≥ a + 1 resp. γ 6=⇒ x ≥ a − 1) for some
arithmetic expression a with x /∈ V(a), then we apply the substitution {x/a}
to the initial limit problem by rule (C). For example, we simplify the limit
problem from Example 4.43 by instantiating x with y2 + 1, as the guard of the
corresponding rule implies x > y2. So here, we get

{(x− y2)+! , y+} {x/y
2+1} {1+! , y+} {y+}.

Afterwards, we use (B) and (D) with highest and (E) with second highest
priority. The third priority is trying to apply (A) to univariate terms (since
processing univariate terms helps to guide the search). As fourth priority, we
apply (C) with a substitution {x/k} if x+! or x−! in S, where we use SMT
solving to find a suitable k ∈ Z. Otherwise, we apply (A) to multivariate terms.
Since  is well founded and, except for (C), finitely branching, one may also
backtrack and explore alternative applications of . In particular, we backtrack
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4.5. Asymptotic Lower Bounds

if we obtain a contradictory limit problem. Moreover, if we obtain a trivial S′
where cost(α)σm is a polynomial, but cost(α) is a polynomial of higher degree
or an exponential function, then we backtrack to search for other solutions
which might lead to a higher lower bound. However, our implementation can of
course fail, since solvability of limit problems is undecidable (due to Hilbert’s
Tenth Problem).
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While the calculus presented in Section 4.5.2 enables a precise analysis of
simplified ITSs, it is also quite expensive in practice. The reason is that the
next  -step is rarely unique and thus backtracking is often unavoidable in
order to find a good solution. We now show how limit problems can be encoded
as conjunctions of polynomial inequalities in many cases. This allows us to use
SMT solvers to solve limit problems more efficiently.
Essentially, the idea is to replace each variable x ∈ V with a linear template
polynomial cx ·m+kx where m is the parameter of the desired family of integer
substitutions σm and cx and kx are abstract coefficients. Here, m is implicitly
universally quantified over N and cx and kx are existentially quantified over Z.
Thus, if a is a polynomial over V, then am = a{x/cx · m + kx | x ∈ V} is a
univariate polynomial over m with abstract coefficients. Moreover, if a is of
degree d, then am can be rearranged to the form cd ·md + . . .+ c0 ·m0 where
we have

⋃d
i=0 V(ci) ⊆ {cx, kx | x ∈ V}.

Clearly, we have limm 7→ω am = ω (resp. −ω) if and only if ci > 0 (resp. ci < 0)
for some i > 0 and aj = 0 for all j ∈ {i+ 1, . . . , d}. Similarly, limm 7→ω am is a
positive (resp. negative) constant if and only if ci = 0 for all i ∈ {1, . . . , d} and
c0 > 0 (resp. c0 < 0).

Definition 4.55 (SMT Encoding of Limit Problems). Let a be a polynomial
of degree d and let am = cd ·md + . . .+ c0 ·m0. We define

smt(a•) =



∨d
i=1

(
ci > 0 ∧

∧d
j=i+1 cj = 0

)
if • = +∨d

i=1

(
ci < 0 ∧

∧d
j=i+1 cj = 0

)
if • = −∧d

j=1 cj = 0 ∧ c0 > 0 if • = +!∧d
j=1 cj = 0 ∧ c0 < 0 if • = −!

We lift smt to limit problems S where a is a polynomial for each a• ∈ S by
defining smt(S) =

∧
a•∈S smt(a•). Furthermore, given polynomial costs c of

degree d with

cm = c{x/cx ·m+ kx | x ∈ V} = cd ·md + . . .+ c0 ·m0,

we define smtc,i(S) = smt(S) ∧ ci > 0 for each i ∈ {1, . . . , d}.

To solve a limit problem S, it suffices to find a solution for smt(S). However, to
maximize the costs c, one should try to find a solution for smtc,i(S) where i is
as large as possible. The reason is that the resulting solution for S allows us to
prove a polynomial lower bound of degree i via Theorem 4.38 and Lemma 4.41.

80



4.6. Solving Limit Problems via SMT

Example 4.56 (Encoding the Initial Limit Problem for Figure 4.3c). We
show how to encode the initial limit problem{

tv+,

(
1
2 · x

2 + 1
2 · x− tv

)+!
}

from Example 4.37.4 We have tvm = ctv ·m + ktv and smt(tv+) = ctv > 0.
Moreover, we have(

1
2 · x

2 + 1
2 · x− tv

)
m

= 1
2 · (cx ·m+ kx)2 + 1

2 · (cx ·m+ kx)− (ctv ·m+ ktv)

= c2 ·m2 + c1 ·m+ c0

where

c2 = 1
2 · c

2
x,

c1 = cx · kx + 1
2 · cx − ctv, and

c0 = k2
x + kx − ktv

and thus

smt
((

1
2 · x

2 + 1
2 · x− tv

)+!
)

= (c2 = c1 = 0 ∧ c0 > 0).

Hence, we have

smt
({

tv+,

(
1
2 · x

2 + 1
2 · x− tv

)+!
})

= (ctv > 0 ∧ c2 = c1 = 0 ∧ c0 > 0).

State-of-the-art SMT solvers can prove unsatisfiability of

smt
({

tv+,

(
1
2 · x

2 + 1
2 · x− tv

)+!
})

within milliseconds. This is not surprising, since we instantiated tv with a non-
linear expression in Example 4.48 in order to find a solution, but Definition 4.55
replaces tv with a linear template polynomial. Thus, even if all arithmetic
expressions in the analyzed limit problem are polynomials,  is still required,
i.e., our SMT based technique does not subsume the calculus presented in

4For reasons of simplicity, we do not take the costs from Figure 4.3c into account.

81



Chapter 4. Lower Bounds for ITSs

Section 4.5.2.5

Example 4.57 (Encoding the Simplified Limit Problem for Figure 4.3c).
After instantiating tv in Example 4.48, we obtain the limit problem{(

1
2 · x

2 + 1
2 · x− 1

)+
}
.

We have (
1
2 · x

2 + 1
2 · x− 1

)
m

= 1
2 · (cx ·m+ kx)2 + 1

2 · (cx ·m+ kx)− 1

= c2 ·m2 + c1 ·m+ c0

where c2 = 1
2 · c

2
x and c1 = cx · kx + 1

2 · cx.
Thus, we have smt(( 1

2 · x
2 + 1

2 · x)+) = ((c2 > 0) ∨ (c2 = 0 ∧ c1 > 0)).
State-of-the-art SMT solvers can easily find an appropriate solution like, e.g.,
{cx/1, kx/0}.

The following theorem shows how a solution for smt(S) can be used to obtain
a solution for S.

Theorem 4.58 (Solving Limit Problems via SMT). Let S be a limit problem
such that a is a polynomial for each a• ∈ S and let σ be an integer substitution
such that σ |= smt(S). Then

σm = {x/cxσ ·m+ kxσ | x ∈ V}

is a solution for S.

Proof. First note that σm is clearly an integer substitution for each m ∈ N.
Thus, to prove the theorem, it suffices to prove that λm. aσm satisfies a• ∈ S
for an arbitrary but fixed a• ∈ S. Let d be the degree of a. Then we have
am = cd ·md + . . .+ c0 ·m0.

Case 1. • = +
Then σ |=

∨d
i=1(ci > 0 ∧

∧d
j=i+1 cj = 0). Hence, we have

amσ = ciσ ·mi + . . .+ c0σ ·m0

where ciσ > 0 for some i ∈ {1, . . . , d}. Thus, we have limm 7→ω amσ = ω. By

5We could also use non-linear templates, but in any case the degree of the template has
to be fixed in advance and thus may be insufficient for the problem at hand.
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construction, we have

amσ = a{x/cxσ ·m+ kxσ | x ∈ V} = aσm. (4.18)

Thus, we have limm 7→ω aσm = ω, i.e., λm. aσm satisfies a+.

Case 2. • = −
Analogous to Case 1 .

Case 3. • = +!
Then σ |=

∧d
j=1 cj = 0 ∧ c0 > 0. Hence, we have

lim
m 7→ω

amσ = lim
m 7→ω

c0σ = c0σ > 0.

With (4.18), we get limm7→ω aσm = c0σ > 0, i.e., λm. aσm satisfies a+! .

Case 4. • = −!
Analogous to Case 3 .

Note that Theorem 4.58 can be integrated into the calculus from Section 4.5.2
seamlessly. Whenever the current limit problem S satisfies the prerequisites
of Theorem 4.58, one tries to find a solution for smtc,i(S) where i is initially
set to the degree of c and decremented until a solution is found. As soon as a
solution σm is found, one can either return σm or keep searching for a better
solution. To this end, one can either backtrack or keep simplifying S via  .
Similarly, if the SMT solver does not find a solution one can either backtrack
or keep simplifying S via  .
However, note that the intention of Theorem 4.58 and its integration into  is
not to add additional power to . Instead, the goal is to delegate the search for
a solution to existing tools instead of relying on heuristics as often as possible.

Example 4.59 (Solving the Simplified Limit Problem for Figure 4.3c). In
Example 4.57, we saw that {cx/1, kx/0} |= smt(( 1

2 · x
2 + 1

2 · x− 1)+). Hence,
according to Theorem 4.58, σm = {x/m} is a solution for {( 1

2 ·x
2+ 1

2 ·x−1)+}.
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4.7 Related Work

As discussed in Section 1.4, there are many techniques to infer worst-case upper
bounds and some techniques to infer best-case lower bounds on the complexity
of integer programs, but the presented technique is the first to infer worst-case
lower bounds. From these techniques, here we just discuss [3], as it has several
similarities to our analysis.
Like our approach, it uses recurrence solving to compute a closed form for the
costs of several consecutive applications of a cost equation with direct recursion
(which corresponds to a simple – potentially non-linear – loop in our setting).
As the analysis from [3] is over-approximating in the sense that it has to reason
about all program runs, there the handling of non-determinism is challenging.
To deal with this issue, they show how to over- and under-approximate (for the
inference of worst-case upper and best-case lower bounds, respectively) the costs
of several consecutive applications of cost equations with linear or geometric
progression behavior via standard recurrence equations. In contrast, we treat
temporary variables, which we use to model non-determinism, as constants
when computing the iterated update and costs. Thus, our iterated update and
costs are only valid for consecutive applications of simple loops where temporary
variables are instantiated with the same values in each iteration. This restriction
is sound in our setting, as it is under-approximating in the sense that it suffices
to prove the existence of a certain family of program runs, i.e., we do not
have to reason about all program runs. To reason about evaluations where the
valuation of the temporary variables changes, we can instantiate them with
expressions containing program variables via Strengthening (Theorem 4.20).
In contrast to our approach from Theorem 4.27, the techniques for cost equa-
tions with multiple recursive calls and non-constant costs from [3] are more
sophisticated. The reason is that their approach to deduce that a cost equation
has linear or geometric progression behavior naturally applies to cost equations
with multiple recursive calls. In contrast, our computation of the iterated up-
date relies on the existence of a single, deterministic update and hence is not
applicable to simple non-linear loops, which also prevents us from computing
the iterated costs for such loops. Thus, our handling of simple non-linear loops
may be improved by incorporating ideas from [3].
Finally, [3] also uses ranking functions to over-estimate the height of evaluation
trees to analyze cost equations with multiple recursive calls. This approach
is closely related to our adaption of metering functions to simple non-linear
loops, as we use metering functions to under-estimate the height up to which
evaluation trees are complete.
Apart from techniques for the computation of symbolic bounds, [32] presents
a technique to generate test-cases that trigger the worst-case execution time
of programs. The idea is to execute the program for small inputs, observe
the required runtime, and then generalize those inputs that lead to expensive
runs. In this way, one obtains generators which can be used to construct larger
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inputs that presumably result in expensive runs. In contrast to the technique
presented in the current chapter, [32] operates on Java, i.e., it also supports
data-structures. However, [32] does not try to infer symbolic bounds, which is
the main purpose of our technique. In fact, ideas from [32] could be incorporated
into our framework. For example, a similar approach could be used in order to
apply Strengthening (cf. Theorem 4.20) in a way that leads to expensive runs.
To simplify programs, we use a variant of loop acceleration to summarize
the effect of applying a loop repeatedly. Acceleration is mostly used in over-
approximating settings (e.g., [46, 69, 91, 99]), where handling non-determinism
is challenging, as loop summaries have to cover all possible non-deterministic
choices. However, our technique is under-approximating, i.e., we can instantiate
non-deterministic values arbitrarily.
In contrast to the under-approximating acceleration technique in [95], instead
of quantifier elimination we use an adaptation of ranking functions to under-
estimate the number of loop iterations symbolically.
Another approach which is related to our acceleration technique is [24], which
identifies cases where the transitive closure of relations can be computed pre-
cisely. This is similar to our computation of the iterated update, cf. Section 4.3.1.
There, we compute a closed form of xηn (i.e., the n-fold application of the up-
date to x) for every program variable x. Thus, we know the value of xηn for
each n ∈ N, which we exploit later on by instantiating n with a fresh variable
that represents the number of loop iterations. In contrast, the transitive clo-
sure

⋃
n∈N xη

n is not sufficient for our use-case, since it does not provide any
information about the value of x after a given (symbolic) number of iterations.
The paper [4] presents a technique to infer asymptotic bounds from concrete
bounds with a so-called context constraint ϕ, i.e., bounds of the form ϕ =⇒
rt ≤ e or ϕ =⇒ rt ≥ e. Here, rt is the runtime of the program and e is
a cost expression, i.e., an expression built from linear expressions, addition,
multiplication, maximum, logarithm, and exponentiation. To avoid negative
values, all occurrences of linear expressions ` in cost expressions have to be
of the form max(`, 0). Moreover, exponentiation is only allowed with positive
natural numbers as base. Thus, the expressions which are supported by [4]
and our technique from Sections 4.5 and 4.6 are orthogonal. Moreover, [4]
infers multi-variate asymptotic bounds, whereas our technique infers univariate
bounds which are only parameterized in the size of the input. Finally, [4]
does not aim to eliminate the context constraint, i.e., the resulting asymptotic
bounds are of the form ϕ =⇒ rt ∈ O(e) or ϕ =⇒ rt ∈ Ω(e). In contrast,
eliminating such context constraints is one of the main motivations for our
technique to deduce asymptotic bounds from concrete bounds.
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4.8 Experiments

Our implementation LoAT (“Lower Bounds Analysis Tool”) is freely available
at [102]. We evaluated it on the benchmarks [20] from the evaluation of [27].
We omitted 50 non-linear programs, since the extension of our technique to
non-linear ITSs from Section 4.4 is not yet implemented. Moreover, we omitted
15 duplicates. As we know of no other tool to compute worst-case lower bounds
for integer programs, we compared our results with the asymptotically smallest
results of leading tools for upper bounds: KoAT, CoFloCo [48, 50], Loopus [113],
PUBS [3], and RanK [8]. The results are presented in Table 4.1, where the
results of the tools for upper bounds were taken from the evaluation of [27].
We did not compare our results with the best-case lower bounds computed
by CoFloCo and PUBS, as such a comparison would be meaningless since the
worst-case lower bounds computed by LoAT are no valid best-case lower bounds.
We used a timeout of 60 seconds. In the following, we disregard 132 examples
where rccp(P)(n) ∈ O(1) was proved since there is no non-trivial lower bound
in these cases.
LoAT infers non-trivial lower bounds for 393 (80%) of the remaining 494 exam-
ples. Tight bounds (i.e., the lower and the upper bound coincide) are proved in
345 cases (70%). Whenever an exponential upper bound is proved, LoAT also
proves an exponential lower bound (i.e., rccp(P)(n) ∈ Ω(kn) for some k > 1).
In 176 cases, LoAT infers unbounded runtime complexity. In some cases, this is
due to non-termination, but for this particular goal, specialized tools are more
powerful (e.g., whenever LoAT proves unbounded runtime complexity due to
non-termination, the termination analyzer T2 [26] shows non-termination as
well). The average runtime of LoAT was 5.3 seconds per successfully analyzed
example. These results could be improved further by supplementing LoAT with
invariant inference as implemented in tools like APRON [90].
Without the SMT encoding for limit problems from Section 4.6, the results for
the examples from [20] only differ marginally, cf. Table 4.2. However, we used
a preliminary implementation of the SMT encoding in our experiments which
only applies to limit problems where all expressions are linear polynomials.
While the latest LoAT version (Git revision 2a41dff) uses the full SMT encoding

LoAT

B
es

t
U

pp
er

B
ou

nd

rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) EXP Ω(ω)
O(1) (132) – – – – – –
O(n) 37 126 – – – – –
O(n2) 8 14 35 – – – –
O(n3) 2 – 2 1 – – –
O(n4) 1 – – – 2 – –
EXP – – – – – 5 –
O(ω) 53 31 1 – – – 176

Table 4.1: Best Upper Bound vs. LoAT
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LoAT SMT
Lo

AT

rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) EXP Ω(ω)
Ω(1) 149 4 – – – – 2
Ω(n) – 166 – – – – 1
Ω(n2) – – 38 – – – –
Ω(n3) – – – 1 – – –
Ω(n4) – – – – 2 – –
EXP – – – – – 5 –
Ω(ω) – 1 – – – – 173

Table 4.2: LoAT vs. LoAT SMT

as presented in Section 4.6, the experiments could not be repeated for reasons
of time. Moreover, as mentioned in Section 1.3.1, LoAT’s SMT encoding was
designed with the particular use-case of finding denial of service vulnerabilities
in Java programs in mind. Thus, we used LoAT as backend for AProVE’s
transformation from Java Bytecode (JBC) programs to ITSs presented in [51]
to see if the SMT encoding for limit problems improves LoAT’s performance
when analyzing Java programs. Note, however, that the transformation from
[51] is sound for upper bounds, but in general it is unsound for lower bounds.
Thus, coupling the transformation from [51] with LoAT is only a heuristic: If
LoAT identifies an expensive family of ITS-runs, then one still has to check if
these ITS-runs are spurious or if they correspond to runs of the original Java
program.
To test the combination of [51] and LoAT, we analyzed the 272 non-recursive Java
programs from the Termination Problems Data Base [122]. We didn’t include

LoAT JBC SMT

Lo
AT

JB
C rc(n) Ω(1) Ω(n) Ω(n2) Ω(ω)

Ω(1) 130 35 1 –
Ω(n) – 29 – –
Ω(n2) – – 3 –
Ω(ω) 1 1 – 72

Table 4.3: LoAT JBC vs. LoAT JBC SMT

LoAT JBC SMT

AP
ro

VE

rc(n) Ω(1) Ω(n) Ω(n2) Ω(n4) Ω(n8) Ω(ω)
O(1) 28 – – – – –
O(n) 54 42 – – – –
O(n2) 7 7 3 – – –
O(n4) 2 2 – – – –
O(n8) 1 – – – – –
O(ω) 67 14 1 – – 72

Table 4.4: AProVE vs. LoAT JBC SMT
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any recursive Java programs, since the transformation from [51] is restricted
to non-recursive programs. Moreover, we excluded 28 examples where AProVE
can infer a constant upper bound. We used an overall timeout of 120 seconds
and a timeout of 60 seconds for LoAT (i.e., LoAT had 60 seconds to analyze each
resulting ITS, unless the transformation from [51] took more than 60 seconds,
which rarely happens in practice). The results are presented in Table 4.3 and
Table 4.4. Table 4.3 compares versions of LoAT with (LoAT JBC SMT) and
without (LoAT JBC) the SMT encoding from Section 4.6. Table 4.4 compares
the lower bounds inferred by LoAT JBC SMT with the upper bounds proven by
AProVE. LoAT JBC proved unbounded runtime complexity in 74 cases and it
inferred 3 quadratic and 29 linear lower bounds, i.e., LoAT inferred non-trivial
bounds for 39% of the analyzed ITSs. LoAT JBC SMT proved unbounded
runtime complexity in 72 cases and it inferred 4 quadratic and 65 linear lower
bounds, i.e., non-trivial bounds were inferred in 52% of all cases. These bounds
were tight in 117 cases (43%), i.e., in these cases, the lower bound inferred by
LoAT coincides with the upper bound inferred by AProVE. Moreover, enabling
the SMT encoding decreased the average runtime from 17.0 to 12.7 seconds
per successfully analyzed example. This clearly shows that the technique from
Section 4.6 significantly improves LoAT’s performance for certain classes of
ITSs.
LoAT uses the recurrence solver PURRS [18] and the SMT solver Z3 [39]. The
version of LoAT that we used as well as a version of AProVE to generate ITSs
from Java programs are available at [52].
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4.9 Conclusion and Future Work

We presented the first technique to infer lower bounds on the worst-case run-
time complexity of integer transition systems, based on a modular program
simplification framework. The main simplification technique is loop accelera-
tion, which relies on recurrence solving and metering functions, an adaptation
of classical ranking functions. By eliminating loops and locations via chaining,
we eventually obtain simplified programs. We presented a technique to infer
asymptotic lower bounds from simplified programs, which can also be used to
find vulnerabilities. In comparison to the preliminary version from [56], we
extended our program simplification framework to non-linear ITSs and we ex-
tended our technique to infer asymptotic lower bounds for simplified programs
by an SMT encoding.
Our implementation LoAT is freely available at [102]. It was inspired by the tool
KoAT [27], which alternates runtime and size analysis to infer upper bounds
in a modular way. Similarly, LoAT alternates runtime analysis and recurrence
solving to transform loops to non-looping rules independently. An experimental
evaluation (Section 4.8) demonstrates the applicability of our technique in
practice.
There are several interesting directions for future work. First of all, as mentioned
in Section 4.8, one should couple LoAT with invariant inference techniques to im-
prove its power. Furthermore, LoAT’s heuristics to apply Strengthening are very
basic and should be improved, e.g., by incorporating ideas from [32]. Another
interesting question is to what extent LoAT can benefit from more sophisticated
techniques to infer metering functions. Possibilities include the inference of
logarithmic or super-linear polynomial metering functions, but one could also
adapt the quasi-ranking functions from [96] to our setting. Moreover, as men-
tioned in Section 4.7, ideas from [3] could be adapted to under-approximate
the costs of repeatedly applying non-linear simple loops more precisely when
accelerating them. Finally, lifting LoAT to integer rewrite systems, i.e., adding
support for arbitrary recursion, would improve its applicability in practice.
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5

Upper Bounds for Recursive Natural Transition
Systems

In this chapter, we study another flavor of integer rewrite systems, namely Re-
cursive Natural Transition Systems (RNTSs). While Chapter 4 was concerned
with lower bounds, the goal of this chapter is to infer upper bounds on the run-
time complexity of RNTSs. In contrast to ITSs, RNTSs just support arithmetic
on natural numbers (instead of integers), but they allow nesting of function
symbols on right-hand sides. Thus, RNTSs allow to pass the result of one
function as a parameter to another function. Hence, the additional difficulty in
contrast to the analysis of ITSs is to estimate the results of functions.
Consequently, we discuss how to obtain bounds for the result computed by a
function using standard complexity analysis tools in Section 5.2 after introduc-
ing the necessary preliminaries in Section 5.1.
Then we show how RNTSs can be analyzed in a bottom-up fashion in Section 5.3.
To this end, we repeatedly analyze the runtime and the result of program parts
P which, considered individually, are ITSs. Afterwards, we use the obtained
bounds to eliminate calls to P from the RNTS. By eliminating calls to P,
program parts which had nested function symbols on right-hand sides are
transformed to ITSs and thus can be analyzed later on. The presented approach
is completely modular, as it repeatedly finds bounds for parts of the RNTS and
combines them.
Finally, we discuss related work in Section 5.4, we evaluate our implementation
in AProVE in Section 5.5, and we conclude in Section 5.6.
In the context of program verification, our technique allows us to overcome
the restrictions of various existing techniques w.r.t. recursion, cf. Section 1.2.
Thereby, we limit ourselves to natural numbers, as the combination of integers
and full recursion is particularly challenging. See Section 5.6 for a more detailed
discussion of ideas and obstacles regarding an extension of our technique to
integers.
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5.1 Program Model

We start with the definition of the program model which we consider throughout
this chapter.

Definition 5.1 (Recursive Natural Transition System (RNTS)). Let ΣN =
{+, ·} ∪ N and let Σ be a finite signature. An RNTS rule over Σ is of the
form f(x) c−→ r [ϕ] where f ∈ Σ, x is a vector of pairwise different variables,
c ∈ T (ΣN,V), r ∈ T (Σ ∪ ΣN,V), and ϕ ∈ Fml(V). A Recursive Natural
Transition System (RTNS) over Σ is a set of RNTS rules over Σ.

Now the transition relation of RNTSs can be defined analogously to ITSs.

Definition 5.2 (Natural Transition Relation). Let P be an RNTS. We have
s k−→P t if there is a context C, a rule ` c−→ r [ϕ] ∈ P, and a substitution
σ : V → T (ΣN) such that C[`σ] = s, C[rσ] = t, σ |= ϕ, and JcσK = k.

Note that the rewrite relation for RNTSs is innermost by construction. The
reason is that the left-hand sides of RNTSs do not have nested function symbols
and RNTS rules are only applicable if all arguments are arithmetic expressions.

Example 5.3. The program from Figure 4.1a can also be modeled by im-
plementing each loop as a separate recursive function, resulting in an RNTS.

β0 : f0(x) 1−→ f2(f1(x), u)
β1 : f1(x) 1−→ f1(x′) + x [x > 0 ∧ x′ = x− 1]
β2 : f1(x) 1−→ 0 [x = 0]
β3 : f2(z, u) 1−→ f2(z′, f3(z′)) [z > 0 ∧ z′ = z − 1]
β4 : f3(u) 1−→ f3(u′) [u > 0 ∧ tv > 0 ∧ u′ = u− tv]
β5 : f3(u) 1−→ 0 [u = 0]

Note that y is just used as an accumulator in the first loop from Figure 4.1a.
Hence, in the RNTS above, y is not required since we are no longer restricted
to tail recursion and thus do not need an accumulator to store the result of f1,
i.e., f1 is now a unary function. The assignment z′ = y is modeled by passing
the result of f1 to f2 in rule β0. Nesting f1 below f2 in rule β0 also enforces the
condition from Figure 4.1a that we must not leave the first loop until x = 0 is
satisfied. The reason is that f2 cannot be evaluated until the inner call to f1
was evaluated to an arithmetic expression, which is only possible when x = 0
holds. Similarly, nesting f3 below f2 in rule β3 corresponds to the condition
that we cannot leave the inner loop until u = 0 holds in Figure 4.1a.

While Example 5.3 could easily be transformed to an ITS like the one from
Figure 4.1c automatically, this is not true in general.
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5.1. Program Model

Example 5.4. Consider the following RNTS, where times multiplies two
natural numbers.

γ0 : times(x, y) 1−→ plus(times(x′, y), y) [x > 0 ∧ x′ = x− 1]
γ1 : times(x, y) 1−→ 0 [x = 0]
γ2 : plus(x, y) 1−→ 1 + plus(x′, y) [x > 0 ∧ x′ = x− 1]
γ3 : plus(x, y) 1−→ y [x = 0]

Transforming it to an ITS is non-trivial, since evaluating times(x, y) results in
a term of the form plus(plus(. . .︸ ︷︷ ︸

x×

0 , y), y) . . .︸ ︷︷ ︸
x×

before a plus rule can be applied

for the first time. Such stacks of function calls cannot be modeled with ITSs.

So in contrast to Example 5.3, the additional difficulty in Example 5.4 is that
the call to the auxiliary function plus is above the recursive call to times in
rule γ0 (whereas the call to f3 is below the recursive call to f2 in rule β3 from
Example 5.3).
In this chapter, we focus on complexity problems where the start terms can
be arbitrary int-basic terms (i.e., in contrast to Chapter 4 we do not fix a
start symbol).1 The reason is that, as mentioned in Section 1.3.2, the technique
presented in this chapter was initially developed as backend for an abstraction
from term rewrite systems and the established notion of complexity for term
rewrite systems also does not require a start symbol. However, as our technique
infers an upper bound for each function individually, this is not a restriction
(i.e., it could also be used to analyze object-oriented or functional programs
with a specific entry point via a transformation to RNTSs).

Definition 5.5 (Canonical Complexity Problem). Let P be an RNTS over
Σ. Its canonical complexity problem is cp(P) = (Tbasic(Σ),−→P , ‖·‖i).

Our approach builds upon the idea of alternating between runtime and size
analysis [27]. The key insight is to summarize functions by approximating their
runtime and their result, and then to eliminate calls to them from the RNTS.
In this way, our analysis decomposes the call graph of the RNTS into “blocks”
of mutually recursive functions and exports each of these blocks into a separate
ITS. Thus, in each analysis step it suffices to analyze just an ITS instead of an
RNTS.
To see the motivation to approximate the result of functions (i.e., to infer size
bounds), reconsider Example 5.4. Its runtime is cubic, as plus is linear in its first
argument, which is instantiated with times(x′, y), i.e., a value of size (x− 1) · y
in rule γ0. In other words, to infer a cubic bound on times’s complexity, it is
crucial to know that the result of times is quadratic, i.e., a quadratic size bound
for times is required.

1Note that it does not harm to allow start terms f(n) where n contains negative integers,
since such terms are trivially normal forms.
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We use weakly monotonic runtime and size bounds to compose them easily
when analyzing nested terms. To see why we need monotonicity, assume that
the right-hand side of an RNTS rule has the form f(x, g(z)) where the result
of g is linear in its only argument, but we obtained a (correct but imprecise)
quadratic bound for g’s result. To estimate the cost of evaluating f(x, g(z)), our
analysis essentially substitutes the size bound for g into the runtime bound for
f. Thus, if we would allow non-monotonic runtime bounds like x− y for f(x, y),
then our approximation of the cost of evaluating f(x, g(z)) would get smaller
(and hence potentially incorrect) due to the imprecise bound for g’s result.

Definition 5.6 (Weakly Monotonic Functions). We say that f : Nk → N is
weakly monotonically increasing if f(n1, . . . , nk) ≤ f(n1, . . . , ni + 1, . . . , nk)
holds for all n1, . . . , nk ∈ N and all i ∈ {1, . . . , k}.

Then runtime resp. size bounds map each function symbol f to a weakly mo-
notonic function which is an upper bound for the cost resp. the result of f.

Definition 5.7 (Runtime and Size Bounds). A function

rt : Σ→ N∗ → N ∪ {ω}

is a runtime bound for an RNTS P if rt(f) is weakly monotonically increasing
and

dh−→P (f(n)) ≤ rt(f)(n)

for all k ∈ N, f ∈ Σk, and n ∈ Nk. Similarly,

sz : Σ→ N∗ → N ∪ {ω}

is a size bound for P if sz(f) is weakly monotonically increasing and

f(n) −→∗P n implies n ≤ sz(f)(n)

for all k ∈ N, f ∈ Σk, n ∈ Nk, and n ∈ T (ΣN).

To ensure monotonicity, we only use runtime and size bounds which are built
from variables, ΣN, and the special constant ω.

Example 5.8 (Size and Runtime Bounds – Example 5.3 continued). For
the RNTS from Example 5.3, any function rt with

rt(f0)(x) ≥ x4 + 2 · x+ 2
rt(f1)(x) ≥ x+ 1
rt(f2)(z, u) ≥ z2 + z

rt(f3)(u) ≥ u+ 1
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is a runtime bound. Similarly, any sz with

sz(f0)(x) ≥ 0
sz(f1)(x) ≥ x2

sz(f2)(z, u) ≥ 0
sz(f3)(u) ≥ 0

is a size bound.

A runtime bound clearly gives rise to an upper bound on the runtime complexity.

Theorem 5.9 (rt and rc). Let P be an RNTS over Σ and let rt be a runtime
bound for P. Then for all n ∈ N, we have

rccp(P)(n) ≤ sup
{

rt(f)(n)
∣∣∣ k ∈ N, f ∈ Σk,n ∈ Nk,

∑
|n| ≤ n

}
.

So in particular, rccp(P)(n) ∈ O
(∑

f∈Σ rt(f)(n, . . . , n)
)
.

Proof. For any n ∈ N we have

rccp(P)(n)
= sup{dh−→P (t) | t ∈ Tbasic(Σ), ‖t‖i ≤ n} by Definition 2.18
= sup{dh−→P (f(n)) | k ∈ N, f ∈ Σk,n ∈ Nk,

∑
|n| ≤ n} by Definition 4.10

≤ sup{rt(f)(n) | k ∈ N, f ∈ Σk,n ∈ Nk,
∑
|n| ≤ n} by Definition 5.7

The second statement of the theorem follows by weak monotonicity of rt.

Thus, a suitable runtime bound rt for the RNTS from Example 5.3 yields
rccp(P)(n) ∈ O(n4), cf. Example 5.8. However, as mentioned above, besides
runtime bounds the technique presented in this chapter also relies on size bounds.
To formalize our techniques for the inference of size bounds in a modular way,
we use the following notion of sound processors for size.

Definition 5.10 (Soundness for Size). Let P be an RNTS over Σ and let
proc be a processor such that proc(cp(P)) = cp(P ′). We say that proc is
sound for size if t −→∗P n with n ∈ T (ΣN) implies t −→∗P′ n′ with n′ ≥ n for all
t ∈ Tbasic(Σ).

Thus, as for the inference of lower and upper bounds we can simplify an RNTS
P via processors which are sound for size until we can extract a size bound
directly. Then this size bound is also valid for P.
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5.2 Size Bounds as Runtime Bounds

We first present a transformation for a large class of ITSs that lets us obtain size
bounds from any method that can infer runtime bounds. The transformation
extends each function symbol from Σ by an additional accumulator argument.
Then expressions that are multiplied with the result of a function are collected
in the accumulator. Expressions that are added to the result are moved to the
cost of the rule.

Theorem 5.11 (Size Bounds for ITSs). Let P be an ITS whose rules are of
the form

f(x) −→ u+ v · g(t) [ϕ]

or
f(x) −→ u [ϕ]

with u, v ∈ T (ΣZ,V) and f, g ∈ Σ. Let2

P↑ = {f ′(x, tv) u·tv−−→ g′(t, v · tv) [ϕ] | f(x) −→ u+ v · g(t) [ϕ] ∈ P} ∪
{f ′(x, tv) u·tv−−→ 0 [ϕ] | f(x) −→ u [ϕ] ∈ P}

for a fresh variable tv ∈ V and let rt be a runtime bound for P↑. Then sz
with sz(f)(x) = rt(f ′)(x, 1) for all f ∈ Σ is a size bound for P.

Theorem 5.11 can be generalized to right-hand sides like f(t) + 2 · g(s) with
f, g ∈ Σ, cf. Theorem A.1.3 However, it is not applicable if the results of function
calls are multiplied on right-hand sides (e.g., f(t) · g(s)) and our technique fails
in such cases.

Example 5.12 (Size Bounds as Runtime Bounds – Example 5.8 continued).
To get a size bound for P f1 = {β1, β2} (cf. Example 5.3), we construct P f1

↑ :

f ′1(x, tv) x·tv−−→ f ′1(x′, tv) [x > 0 ∧ x′ = x− 1]
f ′1(x, tv) 0−→ 0 [x = 0]

Existing ITS tools can compute a runtime bound like rt(f′1)(x, tv) = x2 · tv for
P f1
↑ . Hence, by Theorem 5.11 we obtain the size bound sz with sz(f1)(x) =

rt(f ′1)(x, 1) = x2 for P f1 .

2Here, f(v, tv) where v is a vector of length k stands for f(v|1, . . . ,v|k, tv).
3As the generalized Theorem A.1 is less intuitive than Theorem 5.11, which is sufficient

to illustrate the underlying idea, Theorem A.1 is only presented in the appendix of this thesis.
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Now we show how complexity tools for ITSs can be used to infer runtime and
size bounds for RNTSs in a bottom-up fashion. To formally capture the idea
of a bottom-up analysis, we introduce the call graph relation for RNTSs.

Definition 5.13 (Call Graph). Let P be an RNTS over Σ and let

Σ(P) = {root(α) | α ∈ P} ∪
⋃
α∈P

Σ(rhs(α)).

Then Σ(P) is the node set of the call graph of P and its edges are

{(root(α), g) | α ∈ P, g ∈ Σ(rhs(α))}.

We write f A g if there is an non-empty path from f to g in the call graph of
P and f w g if f A g or f = g.

So the call graph of P has an edge from f to g if and only if there is a rule where
f occurs on the left-hand and g occurs on the right-hand side. Our approach
is only applicable to RNTSs without nested recursion. For such RNTSs, we
analyze induced sub-RNTSs independently

Definition 5.14 (Nested Recursion, Induced RNTSs). An RNTS P has
nested recursion if it has a rule ` −→ r [ϕ] with root(r|π) A root(`) and
root(r|τ ) A root(`) for positions π < τ . The sub-RNTS of P induced by f is
P f = {α ∈ P | f w root(α)}.

Thus, our approach is not applicable to RNTSs with rules of the form f(. . .)→
f(. . . f(. . .) . . .). However, such rules rarely occur in practice. The most promi-
nent example for nested recursion is the recursive rule for the Ackermann
function:

ack(m,n) −→ ack(m′, ack(m,n′)) [m′ = m− 1 ∧ n′ = n− 1]

We have

root(ack(m′, ack(m,n′))|ε) = root(ack(m′, ack(m,n′))|2) A ack

and ε < 2. Thus, this rule has nested recursion and hence cannot be handled
by the technique presented in this chapter.
The call graph relation A induces a partial order on Σ where f ≥ g if and only
if f = g or f A g and g 6A f. In the remainder of this section, when we say that
“f is smaller than g”, “f is minimal”, etc., then we refer to this partial order.
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f0

f1 f2

f3

Figure 5.1: Call Graph of Example 5.3

Example 5.15 (Call Graph – Example 5.12 continued). The RNTS from
Example 5.3 does not have nested recursion. Its call graph is depicted in
Figure 5.1. Its function symbols induce the RNTSs P f0 = {β1, . . . , β5},
P f1 = {β1, β2}, P f2 = {β3, β4, β5}, and P f3 = {β4, β5}.

To compute bounds for an RNTS P without nested recursion, we start with the
trivial bounds rt(f)(x) = sz(f)(x) = ω for all f ∈ Σ. In each step, we analyze
the sub-RNTS P f induced by one of the smallest symbols f with rt(f)(x) = ω

and refine rt and sz for all function symbols of P f . Afterwards we replace the
rules from P f with trivial rules, i.e., rules whose right-hand sides are arithmetic
expressions, and eliminate calls to P f via chaining. In this way, sub-RNTSs
induced by greater symbols are transformed into ITSs and thus they can be
analyzed in the next step.
When computing bounds for a function symbol f, we already know (weakly
monotonic) size and runtime bounds for all smaller symbols. To handle right-
hand sides like f(. . . g(. . .) . . .) where f ∈ Σ is the function symbol we are
analyzing and we have an inner call to a smaller symbol g, we replace g(. . .) by
a fresh variable tv. The size bound of the replaced call g(. . .) serves as upper
bound for the value of tv, but tv can also take smaller values. This replacement
is implemented via the processors Inner Simplification and Inner Chaining. We
first introduce Inner Simplification, which allows us to replace all rules for a
successfully analyzed function symbol with a single trivial rule.

Theorem 5.16 (Inner Simplification). Let P be an RNTS with runtime and
size bounds rt and sz, and let f ∈ Σ such that rt(f)(x) 6= ω. Moreover, let
tv ∈ V be a fresh variable, let4

αf = f(x) rt(f)(x)−−−−−→ tv [tv ≤ sz(f)(x)], and let
P ′ = {α ∈ P | root(α) 6= f} ∪ {αf}.

Then the processor mapping cp(P) to cp(P ′) is sound for upper bounds and
size.
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Note that the name “Inner Simplification” expresses that the rules resulting
from this processor can be used for Inner Chaining afterwards, i.e., they can be
used to eliminate inner calls to previously analyzed functions. The processor
Inner Simplification itself is applicable to arbitrary previously analyzed function
symbols.
Before we prove Theorem 5.16, we show that it suffices to consider finite rewrite
sequence in such soundness proofs.

Lemma 5.17. Let P,P ′ be RNTSs over Σ. If t0 k−→∗P tm implies t0 k′−→∗P′ t′m
with k′ ≥ k for all t0 ∈ Tbasic(Σ), then dh−→

P′
(t0) ≥ dh−→P (t0).

Proof. We have

dh−→P (t0)
= sup{k | tm ∈ T (Σ ∪ ΣN), t0 k−→∗P tm} by Definition 2.12
≤ sup{k′ | t′m ∈ T (Σ ∪ ΣN), t0 k′−→∗P′ t′m} as t0 k−→∗P tm implies t0 k′−→∗P′ t′m

with k′ ≥ k
= dh−→

P′
(t0) by Definition 2.12.

Proof of Theorem 5.16. Let P = {α ∈ P | root(α) = f}. We prove soundness
for upper bounds and size independently.

Claim 1. The processor is sound for upper bounds.
We prove

t0
k−→mP tm implies t0 k′−→∗P′ t′m where k′ ≥ k.

for all terms t0. Then the claim follows with Lemma 5.17. We use induction
on m. If m = 0, then t0 = tm and k = 0 and hence the claim is trivial.
Assume m > 0. Let α and π be the rule and the position which are used for
the first step in the rewrite sequence, i.e., we have t0

k1−−→α t1
k−k1−−−−→m−1

P tm.
If α /∈ P, then we have t0

k1−−→P′ t1 and the claim follows from the induction
hypothesis. Assume α ∈ P.

Case 1. t0|π is reduced to an arithmetic expression
More precisely, in this case there is an i ∈ {1, . . . ,m} such that ti|π ∈
T (ΣN). Then we may assume that the first mπ > 0 steps of the rewrite
sequence t0 k−→mP tm normalize t0|π without loss of generality since RNTSs
are evaluated with an innermost strategy. Thus, we have

t0 = t0[f(n)]π
kπ−−→mπP t0[nπ]π

k−kπ−−−−→m−mπP tm

for some kπ, nπ ∈ T (ΣN) and some n ⊆ T (ΣN). Since rt and sz are runtime
and size bounds for P, we get kπ ≤ rt(f)(n) and nπ ≤ sz(f)(n). Thus, we

4If sz(f)(x) = ω, then tv ≤ sz(f)(x) is a tautology, i.e., then we have guard(αf) = true.
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get
t0[f(n)]π

rt(f)(n)−−−−−→αf
t0[nπ]π = t1

by instantiating tv with nπ. Then the claim follows from the induction
hypothesis.

Case 2. t0|π is not reduced to an arithmetic expression
More precisely, in this case we have π ∈ pos(tm) and tm|π /∈ T (ΣN). Then
we may again assume that the first mπ > 0 steps of the rewrite sequence
t0

k−→mP tm reduce t0|π to tm|π without loss of generality since RNTSs are
evaluated with an innermost strategy, i.e., we have

t0 = t0[f(n)]π
kπ−−→mπP t0[tm|π]π

k−kπ−−−−→m−mπP tm (5.1)

for some kπ ∈ T (ΣN) and some n ⊆ T (ΣN) where all rewrite steps
t0[tm|π]π −→∗P tm take place at positions which are independent from π.
Hence, we have

t0[q]π
k−kπ−−−−→m−mπP tm[q]π for every term q

by applying the same rules in the same order at the same positions with
the same substitutions as in (5.1). Since rt is a runtime bound for P, we
get kπ ≤ rt(f)(n). Thus, we get

t0[f(n)]π
rt(f)(n)−−−−−→αf

t0[0]π
k−kπ−−−−→m−mπP tm[0]π

by instantiating tv with 0. Then the claim follows from the induction
hypothesis.

Claim 2. The processor is sound for size.
To prove the claim, we prove

t0 −→mP tm with tm ∈ T (ΣN) implies t0 −→∗P′ tm.

As in the proof of Claim 1 , we use induction on m. We only have to consider
Case 1 , since the rewrite sequence does not end with an arithmetic expression
in Case 2 . Note that we indeed have t′m = tm in the proof of Case 1 . Thus,
the proof of Claim 2 is analogous to the proof of Claim 1 , Case 1 .
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Example 5.18 (Inner Simplification – Example 5.15 continued). Reconsider
the RNTS P from Example 5.3 and assume that we already inferred the
size bound sz(f1)(x) = x2 (cf.Example 5.12) and the (trivial) size bound
sz(f3)(u) = 0 for its minimal symbols. Since P f1 and P f3 are ITSs, we can
directly compute runtime bounds like rt(f1)(x) = x+ 1 and rt(f3)(u) = u+ 1
using existing tools. Now we can simplify P by applying Inner Simplification
to f1 and f3 in order to eliminate the inner call to f3 on the right-hand side
of β3 via Inner Chaining later on (cf. Example 5.22). In this way, we obtain
the following RNTS:

β0 : f0(x) 1−→ f2(f1(x), u)
βf1 : f1(x) x+1−−−→ tv

[
tv ≤ x2]

β3 : f2(z, u) 1−→ f2(z′, f3(z′)) [z > 0 ∧ z′ = z − 1]
βf3 : f3(u) u+1−−−→ tv [tv ≤ 0]

Example 5.19 (Inner Simplification – Example 5.4 continued). Assume
that we already computed the runtime and size bounds rt(plus)(x, y) = x+ 1
and sz(plus)(x, y) = x+y. Then applying Inner Simplification to plus results
in the following RNTS:

γ0 : times(x, y) 1−→ plus(times(x′, y), y) [x > 0 ∧ x′ = x− 1]
γ1 : times(x, y) 1−→ 0 [x = 0]
γplus : plus(x, y) x+1−−−→ tv [tv ≤ x+ y]

However, later on we will see that the resulting trivial rule γplus is not suitable
to eliminate the outer call to plus in γ0 (cf. Example 5.23).

After replacing the rules for successfully analyzed symbols by trivial rules, inner
calls to these symbols can be eliminated via chaining.

Definition 5.20 (Chaining). Let P be an RNTS with size bound sz. We
lift sz to terms by defining sz(x) = x if x ∈ V, sz(f(t)) = sz(f)(sz(t)) if f ∈ Σ,
and sz(f(t)) = f(sz(t)) if f ∈ ΣN. Let P contain the following rules:

α1 : f1(x) c1−→ C[f2(t)] [ϕ1]
α2 : f2(y) c2−→ t [ϕ2]

W.l.o.g., assume V(α1)∩V(α2) = ∅ (otherwise, one can rename the variables
in one rule accordingly). Then chaining α1 and α2 yields

α1.2 : f1(x) c1+c2{y/sz(t)}−−−−−−−−−→ C[t{y/t}] [ϕ1 ∧ ϕ2{y/t}].

Note that α1.2 is only a valid RNTS rule if t|i /∈ T (ΣN,V) implies y|i /∈ V(ϕ2)
since otherwise guard(α1.2) contains function symbols. However, our processors
which are based on chaining ensure that the resulting rule is valid. For example,
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Theorem 5.21 can be used to eliminate “innermost” calls to previously analyzed
function symbols. So in this case, we know that all arguments t of the eliminated
call are arithmetic expressions.
To eliminate such inner calls, we chain a rule α1 of the form

f1(. . .) −→ g(. . . f2(. . .) . . .)

with a trivial rule α2 for f2, i.e., a rule of the form f2(y) −→ t where t is an
arithmetic expression. Then α1 is replaced by the new (chained) rule. This
is only sound if we know that the subterm f2(. . .) of α1’s right-hand side is
eventually reduced with α2 in cost-maximal rewrite sequences. Hence, we
require that α2 is the only f2-rule and that α2’s guard is satisfiable for all
valuations of y.

Theorem 5.21 (Inner Chaining). Let P be an RNTS with rules α1, α2 as
in Definition 5.20 where t ⊆ T (ΣN,V), α2 is the only rule with root f2,
t ∈ T (ΣN,V), and ϕ2σ is satisfiable for all substitutions σ : V → T (ΣN,V)
with dom(σ) = y. Furthermore, let P ′ = P ∪ {α1.2} \ {α1}. Then the
processor mapping cp(P) to cp(P ′) is sound for upper bounds and size.

Proof. First of all, note that t ⊆ T (ΣN,V) ensures that α1.2 is a valid RNTS
rule. We prove soundness for upper bounds and size separately.

Claim 1. The processor is sound for upper bounds.
It suffices to prove

t0
k−→∗P tm implies t0 k′−→∗P′ t′m with k′ ≥ k.

for all terms t0. Then the claim follows with Lemma 5.17. Instead, we prove
the more general statement

t0
k−→∗P∪{α1.2} tm implies t0 k′−→∗P′ t′m with k′ ≥ k.

We use induction on the number of α1-steps in t0
k−→∗P∪{α1.2} tm. If there is

no such step, then the claim is trivial.

Otherwise, consider the last α1-step, i.e., we have

t0
k1−−→∗P∪{α1.2} ti = ti[f1(x)σ1]π

c1σ1−−−→α1
ti[C[f2(t)]σ1]π

k2−−→∗P′ tm (5.2)

with k = k1 + c1σ1 + k2 for some position π and some integer substitution
σ1. It remains to show

ti[f1(x)σ1]π k−→P′ t′m with k ≥ c1σ1 + k2. (5.3)

Then the claim follows from the induction hypothesis. Let π′ be the position
of � in C.
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Note that α2 can be used to reduce f2(t)σ1 to an arithmetic expression. The
reason is that we have t ⊆ T (ΣN,V) and guard(ϕ2) is satisfiable for every
instantiation of y. Moreover, since α2 is the only rule with root f2, this is the
only way how f2(t)σ1 can be reduced. W.l.o.g., we can assume that f2(t)σ1
is indeed reduced to an arithmetic expression with α2 in (5.2). Otherwise,
we have tm|π.π′ = f2(t)σ1, i.e., then there is a rewrite sequence

t0
k−→∗P∪{α1.2} tm

c2σ2−−−→α2
tm[tσ2]π.π′

for some integer substitution σ2 with σ2|y = {y/tσ1} which we can consider
instead of the rewrite sequence t0 k−→∗P∪{α1.2} tm.

Thus, the rewrite sequence (5.2) can be reordered such that the α1-step is
directly succeeded by an α2-step at position π.π′ without affecting its cost or
result. The reason is that we have t ⊆ T (ΣN,V) and RNTSs are evaluated
with an innermost strategy. Thus, w.l.o.g. we assume

ti[f1(x)σ1]π
c1σ1−−−→α1

ti[C[f2(t)]σ1]π
= ti[C[f2(y)σ2]σ1]π
c2σ2−−−→α2

ti[C[tσ2]σ1]π
k′2−−→∗P′ tm

with k2 = c2σ2 + k′2. To finish the proof of (5.3), we prove

f1(x)σ1
c1σ1+c2σ2−−−−−−→α1.2

C[tσ2]σ1. (5.4)

Let σ = σ1|V(α1) � σ2|V(α2). Then we have σ1|V(α1) = σ|V(α1) and thus
σ1 |= ϕ1 implies σ |= ϕ1. Moreover, we have:

σ2 |= ϕ2
⇐⇒ σ2|V(α2) |= ϕ2 as V(ϕ2) ⊆ V(α2)
⇐⇒ {y/tσ1} � σ2|V(α2) |= ϕ2 as tσ1 = yσ2
⇐⇒ {y/tσ1|V(α1)} � σ2|V(α2) |= ϕ2 as V(t) ⊆ V(α1)
⇐⇒ {y/t} � σ1|V(α1) � σ2|V(α2) |= ϕ2 as V(α1) ∩ V(α2) = ∅
⇐⇒ σ1|V(α1) � σ2|V(α2) |= ϕ2{y/t}
⇐⇒ σ |= ϕ2{y/t} as σ = σ1|V(α1) � σ2|V(α2)

Hence, σ |= guard(α1.2). (5.5)

Moreover, we have

f1(x)σ1 = f1(x)σ = lhs(α1.2)σ and (5.6)
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C[tσ2]σ1 = C[t{y/tσ1}σ2]σ1 as tσ1 = yσ2

= C[t{y/tσ}σ]σ as σ = σ1|V(α1) � σ2|V(α2)

and V(α1) ∩ V(α2) = ∅ (5.7)
= C[t{y/t}]σ
= rhs(α1.2)σ.

Finally, we have:

c1σ1 + c2σ2
= c1σ1 + c2{y/tσ1}σ2 as tσ1 = yσ2
= c1σ + c2{y/t}σ as σ = σ1|V(α1) � σ2|V(α2)

and V(α1) ∩ V(α2) = ∅
= c1σ + c2{y/sz(t)}σ as t ⊆ T (ΣN,V)
= cost(α1.2)σ

(5.8)

Together, (5.5) – (5.8) imply (5.4).

Claim 2. The processor is sound for size.
It suffices to prove

t0 −→∗P tm with tm ∈ T (ΣN) implies t0 −→∗P′ tm.

Instead, we again prove the more general statement

t0 −→∗P∪{α1.2} tm with tm ∈ T (ΣN) implies t0 −→∗P′ tm.

As in the proof of Claim 1 , we use induction on the number of α1-steps in the
sequence t0 −→∗P∪{α1.2} tm. Note that we indeed have t′m = tm in the proof of
Claim 1 , i.e., the proof of Claim 2 is analogous to the proof of Claim 1 .

Note that the rules resulting from Theorem 5.16 satisfy the prerequisites of
Theorem 5.21, i.e., these rules can be used for inner chaining.

Example 5.22 (Inner Chaining – Example 5.18 finished). Theorem 5.21 is
applicable to β0 and βf1 , since the only argument x of the call f1(x) on the
right-hand side of β0 is an arithmetic expression and guard(βf1) is satisfiable
for every instantiation of x (by setting tv to 0). Moreover, βf1 is the only
rule with root f1. Similarly, Theorem 5.21 is applicable to β3 and βf3 . Thus,
by applying Theorem 5.21 twice we obtain the following RNTS:

β0.f1 : f0(x) x+2−−−→ f2(tv, u)
[
tv ≤ x2]

βf1 : f1(x) x+1−−−→ tv
[
tv ≤ x2]

β3.f3 : f2(z, u) z′+2−−−→ f2(z′, tv) [z > 0 ∧ z′ = z − 1 ∧ tv ≤ 0]
βf3 : f3(u) u+1−−−→ tv [tv ≤ 0]
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Since this RNTS is also an ITS, standard complexity analysis tools can now
compute runtime bounds like

rt(f2)(z, u) = z2 + z and rt(f0)(x) = x4 + x2 + x+ 2.

This proves that the runtime complexity of Example 5.3 is in O(n4).

However, Theorem 5.21 cannot be used to eliminate outer calls to previously
analyzed symbols.

Example 5.23 (Inner Chaining – Example 5.19 continued). Even though the
only remaining plus rule is trivial, Theorem 5.21 cannot be used to eliminate
the call to plus on the right-hand side plus(times(x′, y), y). The reason is
that times(x′, y) is not an arithmetic expression and thus the prerequisites
of Theorem 5.21 are not satisfied, as Theorem 5.21 can only be applied if all
arguments of the call which needs to be eliminated are arithmetic expressions.

To handle such calls, we introduce the processor Size Simplification (cf. Theo-
rem 5.27). Like Inner Simplification, it transforms non-trivial into trivial rules.
These trivial rules can then be used for Outer Chaining (cf. Theorem 5.29), i.e.,
they are suitable to eliminate outer calls to previously analyzed symbols like
plus(times(x′, y), y). In contrast to Theorem 5.16 where the right-hand side of
the resulting trivial rule for f is a variable whose value is bounded by sz(f), the
right-hand side of the rules resulting from Theorem 5.27 is sz(f) itself. Conse-
quently, a condition like “tv ≤ sz(f)(x)” from Theorem 5.16 is not required, i.e.,
the guard of the rules resulting from Theorem 5.27 is “true”. Hence, if such
rules are used for chaining, then the resulting chained rule is a valid RNTS rule
even if the arguments of the eliminated call contain function symbols.
However, replacing all f-rules with such a trivial rule is only sound if all function
symbols g that may occur above f behave monotonically w.r.t. their costs and
results. Otherwise, replacing f with its upper bound sz(f) might result in
smaller costs or results for terms of the form g(. . . f(. . .) . . .). To formalize this
precondition, the following definition captures which function symbols may
occur above other function symbols.

Definition 5.24 (Σo). Let P be an RNTS over Σ. We define

Σo = {f ∈ Σ | `→ r [ϕ] ∈ P, π, τ ∈ N∗, π < τ, root(r|π) = f, root(r|τ ) ∈ Σ}.

We call a term t properly nested if root(t|π), root(t|τ ) ∈ Σ with π < τ implies
root(t|π) ∈ Σo.

The following lemma states that properly nested terms are closed under rewrit-
ing. So in particular, Σo contains all function symbols that may occur above
other function symbols in rewrite sequences starting with basic terms (since
each basic term is properly nested).
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Lemma 5.25 (Properly Nested Terms are Closed Under Rewriting). Let P
be an RNTS. If t is a properly nested term with t −→P q, then q is properly
nested.

Proof. Let µ and τ be positions with µ < τ such that root(q|µ), root(q|τ ) ∈ Σ
(if there are no such positions, then the claim is trivial). To prove the lemma,
we prove root(q|µ) ∈ Σo. Let π and α be the position and the rule of the
rewrite step t −→P q. If π and τ are independent or τ < π, then we have
root(t|µ) = root(q|µ) and root(t|τ ) = root(q|τ ). Thus, we have root(q|µ) ∈ Σo,
since t is properly nested. Assume π ≤ τ . If π ≤ µ, then root(q|τ ) occurs below
root(q|µ) in rhs(α) and thus we have root(q|µ) ∈ Σo by the definition of Σo.
If µ < π, then there is a non-empty position µ′ such that π = µ.µ′ and we
have t|µ = q|µ[s]µ′ where root(s) ∈ Σ. Thus, we have root(q|µ) ∈ Σo, since t is
properly nested.

Moreover, Definition 5.24 gives rise to the following straightforward corollary

Corollary 5.26. Let P be an RNTS over Σ. P is an ITS if and only if
Σo = ∅.

To transform an induced sub-RNTS P f into an ITS, we eliminate all calls to Σo.
To this end, Size Simplification simultaneously replaces all rules for Σo-symbols
with trivial rules which behave monotonically w.r.t. cost and size. In this way,
it is ensured that all function symbols that may occur above other function
symbols behave monotonically. Thus, Size Simplification is sound, even though
the resulting trivial rules may yield larger results than the original rules. Then
all remaining calls to Σo (i.e., those calls that could not be eliminated via
Inner Simplification and Inner Chaining) can be eliminated via Outer Chaining
afterwards, resulting in an ITS.

Theorem 5.27 (Size Simplification). Let P be an RNTS over Σ with runtime
and size bounds rt and sz where rt(f) 6= ω for all f ∈ Σo. For each f ∈ Σo let

αf = f(x) rt(f)(x)−−−−−→ r

where r = tv ∈ V is a fresh variable if sz(f)(x) = ω and r = sz(f)(x) otherwise.
Furthermore, let

P ′ = {α ∈ P | root(α) /∈ Σo} ∪ {αf | f ∈ Σo}.

Then the processor mapping cp(P) to cp(P ′) is sound for upper bounds and
size.

Proof. We prove both claims individually.
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Claim 1. The processor is sound for upper bounds.
We prove

t0
k1−−→P . . .

km−−→P tm implies t0 k′−→∗P′ t′m with k′ ≥
m∑
i=1

ki (5.9)

for all properly nested terms t0. Then the claim follows with Lemma 5.17,
since each basic term is properly nested. Let k =

∑m
i=1 ki. By Lemma 5.25,

t1, . . . , tm are properly nested. (5.10)

W.l.o.g., we assume that Σo-rules (i.e., the rules {α ∈ P | root(α) ∈ Σo})
are applied with a lower priority than Σ \ Σo-rules in the rewrite sequence
t0

k−→∗P tm. Otherwise, the rewrite steps can be reordered accordingly due to
the innermost evaluation strategy of RNTSs.

Case 1. tm ∈ T (ΣN)
Then there is a k ∈ {0, . . . ,m} such that t0 k′−→∗P tk and Σ(tk) ⊆ Σo due to
(5.10) and our assumption w.r.t. the evaluation strategy above. We show
that

tk
k−→∗P tm implies tk k̃−→∗P′ t′m with k̃ ≥ k and t′m ≥ tm.

We use induction on tk = f(t). Let n ⊆ T (ΣN) be the normal forms of t
in the rewrite sequence tk −→∗P tm, i.e., we have

f(t) k1−−→∗P f(n) k2−−→∗P tm with k = k1 + k2.

By the induction hypothesis, we have f(t) k̃1−−→∗P′ f(n′) where n′ ≥ n and
k̃1 ≥ k1.
If f ∈ ΣN, then we have k2 = 0 and tm = f(n). Thus, we have k̃ = k̃1 ≥
k1 = k. Furthermore, we have t′m = f(n′) ≥ tm by monotonicity of f.
Assume f ∈ Σo. If sz(f) = ω, then we have f(n′) rt(f)(n′)−−−−−→P′ tm by instanti-
ating tv with tm. Since rt is a runtime bound, we have rt(f)(n) ≥ k2.
Thus, rt(f)(n′) ≥ k2 follows by monotonicity of rt. Hence, we have
k̃ = k̃1 + rt(f)(n′) ≥ k1 + k2 = k.
If sz(f) 6= ω, then we have

f(n′) rt(f)(n′)−−−−−→P′ sz(f)(n′) = t′m.

Since sz is a size bound, we have sz(f)(n) ≥ tm. By monotonicity of sz, we
get

t′m = sz(f)(n′) ≥ sz(f)(n) ≥ tm.

Moreover, we again have rt(f)(n′) ≥ k2 and thus k̃ = k̃1 + rt(f)(n′) ≥
k1 + k2 = k as above since rt is a monotonic runtime bound.

Case 2. tm /∈ T (ΣN)
Then there is a k ∈ {0, . . . ,m} such that t0 k′−→∗P tk and root(tk|π) ∈ Σ\Σo
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implies tk|π = tm|π due to (5.10) and our assumption w.r.t. the evaluation
strategy above. We prove that

tk
k−→∗P tm implies tk k̃−→∗P′ t′m with k̃ ≥ k for some term t′m.

We use induction on tk = f(t). If f ∈ Σ \ Σo, then tk = tm and thus the
claim is trivial. Assume f ∈ Σo ∪ΣN and let t′ be the normal forms of t in
the rewrite sequence tk −→∗P tm, i.e., we have

f(t) k1−−→∗P f(t′) k2−−→∗P tm with k = k1 + k2.

If t′ 6⊆ T (ΣN), then we have k = k1 and f(t′) = tm. Thus, the claim
follows by the induction hypothesis, which implies

f(t) k̃1−−→∗P′ f(t′′) with k̃1 ≥ k1 for some terms t′′.

If t′ ⊆ T (ΣN), then we get

f(t) k̃1−−→∗P′ f(t′′) where k̃1 ≥ k1 and t′′ ≥ t′

due to Case 1 . Furthermore, we get f(t′′) rt(f)(t′′)−−−−−→αf
t′m for some term t′m

by definition of αf . Since rt is a runtime bound, we have rt(f)(t′) ≥ k2.
By monotonicity of rt, we get rt(f)(t′′) ≥ k2. Thus, we have

k̃ = k̃1 + rt(f)(t′′) ≥ k1 + k2 = k.

Claim 2. The processor is sound for size.
It suffices to prove

t0 −→∗P tm with tm ∈ T (ΣN) implies t0 −→∗P′ t′m with t′m ≥ tm.

Note that we only need to consider Case 1 , as we have tm /∈ T (ΣN) in Case
2 . Indeed, we have t′m ≥ tm in the proof of Case 1 . Thus, the proof is
analogous to Claim 1 , Case 1 .

Example 5.28 (Size Simplification – Example 5.23 continued). By applying
Theorem 5.27 to the RNTS from Example 5.19 where we have Σo = {plus}
we obtain:

γ0 : times(x, y) 1−→ plus(times(x′, y), y) [x > 0 ∧ x′ = x− 1]
γ1 : times(x, y) 1−→ 0 [x = 0]
γsz

plus : plus(x, y) x+1−−−→ x+ y

The rules created by Theorem 5.27 are suitable to perform Outer Chaining.
This technique eliminates outer calls, i.e., it chains a rule α1 of the form

f1(. . .) −→ f2(. . . g(. . .) . . .)
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with a trivial rule α2 of the form f2(y) −→ t where t is an arithmetic expression.
Then α1 is replaced by the new (chained) rule. Similarly to the preconditions
of Inner Chaining, this is only sound if we know that the outer occurrence of f2
in α1’s right-hand side is eventually reduced with α2 in cost-maximal rewrite
sequences. Hence, we require that α2 is the only f2-rule and that α2’s guard is
“true”. As mentioned above, the latter also ensures that the resulting chained
rule is a valid RNTS rule.
Finally, we require that the cost of α2 only contains variables from y. While
this requirement is not crucial for correctness, it eases the proof of Theorem 5.29
without affecting the power of our technique. The reason is that the cost of α2
is unbounded if it depends on the value of some variable tv /∈ y, which implies
that the runtime complexity of the analyzed RNTS is unbounded and hence
our technique is bound to fail anyways. To see this, recall that the guard of α2
is “true” and hence cannot impose any restrictions on tv’s value.

Theorem 5.29 (Outer Chaining). Let P be an RNTS with rules α1, α2 as
in Definition 5.20 where t ∈ T (ΣN,V), V(c2) ⊆ y, α2 is the only rule with
root f2, and guard(α2) = true. Moreover, let P ′ = P \ {α1} ∪ {α1.2}. Then
the processor mapping cp(P) to cp(P ′) is sound for size. If every variable
from y occurs at least once in t, then it is also sound for upper bounds.

To prove soundness of Theorem 5.29, we need the following lemma.

Lemma 5.30 (Correctness of sz on Terms). Let P be an RNTS with size
bound sz. If t0 −→∗P tm for some tm ∈ T (ΣN), then sz(t0) ≥ tm.

Proof. We use induction on t0. Note that tm ∈ T (ΣN) implies that t0 is ground,
i.e., we have t0 = f(t). Let q be the normal forms of t in the rewrite sequence
f(t) −→∗P tm. By the induction hypothesis, we have sz(t) ≥ q. If f ∈ ΣN, then the
lemma follows by weak monotonicity of f. If f ∈ Σ, then we have sz(f)(q) ≥ tm
since sz is a size bound. Thus, we obtain sz(f(t)) = sz(f)(sz(t)) ≥ sz(f)(q) ≥ tm
by weak monotonicity of sz(f).

Proof of Theorem 5.29. First of all, note that guard(α2) = true implies that
α1.2 is a valid RNTS rule. We prove soundness for size and upper bounds
separately.

Claim 1. The processor is sound for upper bounds.
To prove soundness for upper bounds, we may assume that every variable
from y occurs at least once in t by the prerequisites of the theorem. By
Lemma 5.17, it suffices to prove that

t0
k−→∗P tm implies t0 k′−→∗P′ t′m with k′ ≥ k.
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for all terms t0. Instead, we prove the more general statement

t0
k−→∗P∪{α1.2} tm implies t0 k′−→∗P′ t′m with k′ ≥ k.

We use induction on the number of α1-steps in t0
k−→∗P∪{α1.2} tm. If there is

no such step, then the claim is trivial. Otherwise, consider the last α1-step,
i.e., we have

t0
k1−−→∗P ti = ti[f1(x)σ1]π

c1σ1−−−→α1
ti[C[f2(t)]σ1]π

k2−−→∗P′ tm (5.11)

for some position π, some integer substitution σ1, and some costs k1,k2 with
k1 + c1σ1 + k2 = k. It remains to show

ti[f1(x)σ1]π k−→∗P′ t′m with k ≥ c1σ1 + k2. (5.12)

Then the claim follows from the induction hypothesis.

Case 1. f2(t)σ1 is reduced to an arithmetic expression
Since RNTSs are evaluated with an innermost strategy, we may assume
that f2(t)σ1 is normalized immediately after the last α1-step without loss
of generality, i.e., we have

ti[f1(x)σ1]π
c1σ1−−−→α1

ti[C[f2(t)]σ1]π
k2.1−−−→∗P′ ti[C[f2(y)σ2]σ1]π
c2σ2−−−→α2

ti[C[tσ2]σ1]π
k2.2−−−→∗P′ tm

(5.13)

for some integer substitution σ2 such that yσ2 are the normal forms of tσ1
in the rewrite sequence (5.11) and k2.1,k2.2 such that

k2 = k2.1 + c2σ2 + k2.2. (5.14)

Note that the last step of any rewrite sequence which reduces f2(t)σ1 to
an arithmetic expression needs to be an α2-step, since α2 is the only rule
with root f2.
Let σ = σ1|V(α1) � σ2|V(α2). Since σ1 |= ϕ1 and guard(α2) = true, we have
σ |= guard(α1.2). Hence, we have

ti[f1(x)σ1]π
= ti[f1(x)σ]π as σ = σ1|V(α1) � σ2|V(α2)
c1σ+c2{y/sz(t)}σ−−−−−−−−−−−→α1.2

ti[C[t{y/t}]σ]π by definition of α1.2

= ti[C[t{y/tσ1}σ2]σ1]π
k′2.1−−−→∗P′ ti[C[t{y/yσ2}σ2]σ1]π as yσ2 are (5.15)

normal forms of tσ1

= ti[C[tσ2]σ1]π
k2.2−−−→∗P′ tm by (5.13),
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i.e., we have

ti
k−→∗P′ tm with k = c1σ + c2{y/sz(t)}σ + k′2.1 + k2.2.

Here, k′2.1 are the costs of normalizing all occurrences of terms from tσ1
in t{y/tσ1} to yσ2. Thus we have k′2.1 ≥ k2.1 since every variable from y
occurs at least once in t.

To finish the proof of (5.12), it remains to prove k ≥ c1σ1 +k2. Note that
we have sz(tσ1) ≥ yσ2 by Lemma 5.30. Thus, we have

c2{y/sz(t)}σ
= c2{y/sz(tσ)} as V(c2) ⊆ y
= c2{y/sz(tσ1)} as V(t) ⊆ V(α1)
≥ c2{y/yσ2} as sz(tσ1) ≥ yσ2 and c2 is monotonic
= c2σ2 as V(c2) ⊆ y.

Hence, we have

k = c1σ + c2{y/sz(t)}σ + k′2.1 + k2.2
= c1σ1 + c2{y/sz(t)}σ + k′2.1 + k2.2 as V(c1) ⊆ V(α1)
≥ c1σ1 + c2σ2 + k2.1 + k2.2
= c1σ1 + k2 by (5.14)

as desired.

Case 2. f2(t)σ1 is not reduced to an arithmetic expression
Let π′ be the unique position of � in C. Then we have tm|π.π′ = f2(t′) for
some terms t′ such that tσ1 −→∗P′ t′. Since RNTSs are evaluated with an
innermost strategy, we may assume that the terms tσ1 are reduced to t′
directly after the last α1-step without loss of generality. Thus, we have

ti[f1(x)σ1]π
c1σ1−−−→α1

ti[C[f2(t)]σ1]π
k2.1−−−→∗P′ ti[C[f2(t′)]σ1]π
k2.2−−−→∗P′ tm

with
k2 = k2.1 + k2.2 (5.16)

where all rewrite steps ti[C[f2(t′)]σ1]π −→∗P′ tm reduce positions which are
independent from π.π′. Hence, we get

ti[C[q]σ1]π
k2.2−−−→∗P′ tm[q]π.π′ (5.17)

for all terms q by applying the same rules in the same order at the same
positions with the same substitutions.
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Since guard(α2) = true, we have σ1 |= guard(α1.2). Thus, we get

ti[f1(x)σ1]π
c1σ1+c2{y/sz(t)}σ1−−−−−−−−−−−−→α1.2

ti[C[t{y/t}]σ1]π by definition of α1.2
k′2.1−−−→∗P′ ti[C[t{y/t′}]σ1]π as tσ1 −→∗P′ t′
k2.2−−−→∗P′ tm[t{y/t′}σ1]π.π′ by (5.17)
= t′m

(5.18)

i.e., we have

ti
k−→α1.2

t′m where k = c1σ1 + c2{y/sz(t)}σ1 + k′2.1 + k2.2

where k′2.1 is the cost of reducing all occurrences of terms from tσ1 in
t{y/t}σ1 to t′. Hence, we have k′2.1 ≥ k2.1, since every variable from y
occurs at least once in t.
To prove (5.12), it remains to prove k ≥ c1σ1 + k2. We have

k = c1σ1 + c2{y/sz(t)}σ1 + k′2.1 + k2.2
≥ c1σ1 + k′2.1 + k2.2
≥ c1σ1 + k2.1 + k2.2
= c1σ1 + k2 by (5.16)

as desired.

Claim 2. The processor is sound for size.
It suffices to prove

t0 −→∗P tm with tm ∈ T (ΣN) implies t0 −→∗P′ tm.

Instead, we prove the more general statement

t0 −→∗P∪{α1.2} tm with tm ∈ T (ΣN) implies t0 −→∗P′ tm.

As in the proof of Claim 1 , we use induction on the number of α1-steps in
t0 −→∗P∪{α1.2} tm. Note that we just have to consider Case 1 , as the rewrite
sequence does not end with an arithmetic expression in Case 2 . Indeed, we
have t′m = tm in the proof of Case 1 . Thus, the proof of Claim 2 is analogous
to the proof of Claim 1 , Case 1 .

Example 5.31 (Outer Chaining – Example 5.28 finished). The rule γsz
plus is

suitable to perform outer chaining. Thus, we obtain the following RNTS by
applying Theorem 5.29:

γsz
0.plus : times(x, y) sz(times)(x′,y)+2−−−−−−−−−−−→ times(x′, y) + y [x > 0 ∧ x′ = x− 1]
γ1 : times(x, y) 1−→ 0 [x = 0]
γsz

plus : plus(x, y) x+1−−−→ x+ y
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Here, sz(times) is left abstract, since we do not know a size bound for times
yet. However, the costs of γsz

0.plus are not needed to compute such a size bound.
Thus, since the RNTS above is also an ITS, standard complexity analysis
tools can be applied to compute sz(times)(x, y) = x · y via Theorem 5.11.
Now γsz

0.plus can be refined to

times(x, y) x′·y+2−−−−→ times(x′, y) + y [x > 0 ∧ x′ = x− 1].

Finally, standard complexity analysis tools can be used to compute a runtime
bound like rt(times)(x, y) = x2 · y + 2 · x+ 1. Thus, the runtime complexity
of the RNTS from Example 5.4 is in O(n3) by Theorem 5.9.

To see why soundness for upper bounds requires that every variable from α2’s
left-hand side has to occur at least once in α2’s right-hand side, assume that
we chain α1 = g(x) 1−→ h(f(x)) with α2 = h(x) 1−→ 0. Then we obtain the rule
g(x) 2−→ 0, which does not take the costs of f into account. If we chain α1 with
h(x) 1−→ x instead, then we obtain g(x) 2−→ f(x), i.e., then the call to f on α1’s
right-hand side is preserved.
Since Size Simplification does not ensure that every variable from the left-hand
side occurs at least once in the right-hand side of the resulting trivial rule, we
now adapt Size Simplification such that the resulting rules are always suitable
for Outer Chaining.

Theorem 5.32 (Outer Simplification). Let P be an RNTS over Σ with
runtime and size bounds rt and sz. For each f ∈ Σo let

αf = f(x) rt(f)(x)−−−−−→ r + 0 ·
∑

x∈x\V(r)

x

where r = tv ∈ V is a fresh variable if sz(f)(x) = ω and r = sz(f)(x) otherwise.
Furthermore, let

P ′ = {α ∈ P | root(α) /∈ Σo} ∪ {αf | f ∈ Σo}.

Then the processor mapping cp(P) to cp(P ′) is sound for upper bounds and
size.

Proof. The proof is analogous to the proof of Theorem 5.27.

However, the technique presented so far has one serious drawback.

Example 5.33 (Duplicating Redexes). Let α1 = g(x) 1−→ h(f(x)) and α2 =
h(x) 1−→ x+x. Then outer chaining yields g(x) 2−→ f(x) + f(x), i.e., the call to
f on α1’s right-hand side is duplicated. As a result, its costs are taken into
account twice, which increases the runtime complexity of the RNTS.
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Hence, for correctness every variable from α2’s left-hand side has to occur at
least once in α2’s right-hand side, but if such a variable occurs more than
once, then we lose precision. To solve this problem, we can use the following
optimization: Before applying Outer Chaining, we add variants with cost 0 of
all rules to the analyzed RNTS.

Theorem 5.34 (Duplication). Let P be an RNTS over Σ and let Σ0 = {f0 |
f ∈ Σ}. Let P0 result from P by replacing all function symbols from Σ with
the corresponding function symbols from Σ0 and by setting the costs of all
rules to 0. Then the processor mapping cp(P) to cp(P ∪ P0) is sound for
runtime and size.

Proof. The processor is sound since P andP0 are RNTSs over disjoint signatures.
Thus, every P-rewrite sequence starting with a term from Tbasic(P) is also a
valid rewrite sequence w.r.t. P ∪ P0.

Then whenever Outer Chaining duplicates a term t, we replace all but one
occurrence of t in the right-hand side of the chained rule by s which results
from t by replacing each function symbol from Σ with the corresponding function
symbol from Σ0. In this way, the cost of evaluating t is taken into account at
most once. To this end, we introduce the following variant of Definition 5.20

Definition 5.35 (Runtime Preserving Chaining). Let P be an RNTS with
size bound sz which contains the rules:

α1 : f1(x) c1−→ C[f2(t)] [ϕ1]
α2 : f2(y) c2−→ t [ϕ2]

W.l.o.g., assume V(α1)∩V(α2) = ∅ (otherwise, one can rename the variables
in one rule accordingly). Moreover, let t′ result from linearizing t w.r.t. y,
i.e., no variable from y occurs more than once in t′, V(t) ⊆ V(t′), all variables
in V(t′) \ V(t) are fresh, and t′µ = t for some substitution µ : V → y with
dom(µ) = V(t′) \ V(t). Finally, let s be terms such that V(s) = V(t) and
t|iθ −→∗P n ∈ T (ΣN) implies s|iθ −→∗P n for all i ∈ {1, . . . , len(t)} and all
integer substitutions θ. Then runtime preserving chaining of α1 and α2
yields

α1.2 : f1(x) c1+c2{y/sz(t)}−−−−−−−−−→ C[t′{y/t}µ{y/s}] [ϕ1 ∧ ϕ2{y/t}].

So after applying Theorem 5.34, the terms s in Definition 5.35 can be obtained
by replacing all function symbols from Σ in t with the corresponding function
symbols from Σ0. Then evaluating sθ has cost 0 for all integer substitutions θ.
The right-hand side C[t′{y/t}µ{y/s}] of the chained rule contains each term
from t at most once (since t′ is linear w.r.t. y). All remaining occurrences
of variables from y in t are replaced with the corresponding terms from s by
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applying the substitutions µ and {y/s}. Now we can use the following variant
of Outer Chaining.

Theorem 5.36 (Runtime Preserving Outer Chaining). Let P be an RNTS
with rules α1, α2 as in Definition 5.35 where t ∈ T (ΣN,V), V(c2) ⊆ y, α2
is the only rule with root f2, and guard(α2) = true. Moreover, let P ′ =
P \ {α1} ∪ {α1.2}. Then the processor mapping cp(P) to cp(P ′) is sound for
size. If every variable from y occurs at least once in t, then it is also sound
for upper bounds.

Proof. We adapt the proof from Theorem 5.29. Instead of (5.15), we now obtain

ti[f1(x)σ]π
c1σ+c2{y/sz(t)}σ−−−−−−−−−−−→α1.2

ti[C[t′{y/t}µ{y/s}]σ]π by definition of α1.2
= ti[C[t′{y/tσ1}µ{y/sσ1}σ2]σ1]π
k′2.1−−−→∗P′ ti[C[t′{y/yσ2}µ{y/yσ2}σ2]σ1]π as yσ2 are

normal forms of tσ1
and hence also of sσ1

= ti[C[t′µ{y/yσ2}σ2]σ1]π as dom(µ) ∩ y = ∅
= ti[C[t{y/yσ2}σ2]σ1]π as t′µ = t

= ti[C[tσ2]σ1]π
k2.2−−−→∗P′ tm by (5.13)

and instead of (5.18), we now obtain

ti[f1(x)σ1]π
c1σ1+c2{y/sz(t)}σ1−−−−−−−−−−−−→α1.2

ti[C[t′{y/t}µ{y/s}]σ1]π by definition of α1.2
k′2.1−−−→∗P′ ti[C[t′{y/t′}µ{y/s}]σ1]π as tσ1 −→∗P′ t′
k2.2−−−→∗P′ tm[t′{y/t′}µ{y/s}σ1]π.π′ by (5.17)
= t′m.

The rest of the proof remains unchanged.

Example 5.37 (Runtime Preserving Outer Chaining – Example 5.33 con-
tinued). After applying Duplication, applying Runtime Preserving Outer
Chaining to the rules from Example 5.33 yields g(x) 2−→ f(x) + f0(x) where
f(x)θ −→∗P n ∈ T (ΣN) implies f0(x)θ 0−→∗P n for all integer substitutions θ.
Thus, the costs of f(x) are taken into account only once.

Our overall algorithm to infer bounds for RNTSs is summarized in Algorithm 3.
It clearly terminates, as in every loop iteration, we either fail to compute a
runtime bound for a function symbol from Σ(P f) and thus return immediately,
or we obtain a finite runtime bound for f, i.e., the number of function symbols
whose runtime bound is ω decreases.
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For soundness of our algorithm, note that runtime and size bounds for induced
sub-RNTSs are clearly also valid for the overall RNTS, which justifies Step 3.7
and Step 3.11.
Moreover, note that we obtain an ITS after Step 3.5. The reason is that we
have rt(f) 6= ω for all f ∈ Σo after Step 3.2 (otherwise, P f had nested recursion).
So all inner calls to these function symbols are eliminated in Step 3.2 and
all remaining (outer) calls are eliminated in Step 3.3 and 3.5. Thus, we have
Σo = ∅ after Step 3.5 which, according to Corollary 5.26, means that we obtain
an ITS.
When implementing Algorithm 3, several improvements are possible. First
of all, it is not always ideal to continue the analysis with one of the smallest
symbols f such that rt(f)(x) = ω. E.g., the RNTS which results from Inner
Chaining in Example 5.22 is already an ITS and hence can be analyzed with
existing tools directly instead of continuing the analysis in a bottom-up fashion.
Moreover, when analyzing P f the result of Steps 3.2 – 3.5 and 3.8 can be cached
and reused later when analyzing some Pg with g A f.

Algorithm 3 Computing Runtime Bounds for RNTSs

1 Let rt(f)(x) := sz(f)(x) := ω for each f ∈ Σ

2 If P has nested recursion, then return rt

3 While there is an f ∈ Σ with rt(f)(x) = ω:

3.1 Set P ′ := PF where f is one of the smallest symbols with rt(f)(x) = ω

3.2 Apply Inner Simplification and Inner Chaining to P ′ exhaustively
3.3 Apply Outer Simplification to P ′

3.4 Apply Duplication to P ′

3.5 Apply Runtime Preserving Outer Chaining to P ′ exhaustively where
the costs of the chained rules are left abstract

3.6 Compute a size bound szf for P ′ using existing tools via Theo-
rems 5.11 and A.1 if possible

3.7 Set sz(g) := szf(g) for each g ∈ Σ(P ′)
3.8 Instantiate the costs in the chained rules from Step 3.5
3.9 Compute a runtime bound rtf for P ′ using existing tools

3.10 If rtf(g)(x) = ω for some g ∈ Σ(P ′), return rt
3.11 Set rt(g) := rtf(g) for each g ∈ Σ(P ′)

4 Return rt
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5.4 Related Work

There exist several approaches that also analyze complexity by inferring both
runtime and size bounds. Wegbreit [128] tries to generate closed forms for
the exact runtime and size of the result of each analyzed function, whereas
we estimate runtime and size by upper bounds. Hence, [128] fails whenever
finding such exact closed forms automatically is infeasible. Serrano et al. [112]
also compute runtime and size bounds, but in contrast to us they work on
logic programs, and their approach is based on abstract interpretation. Our
technique in Section 5.3 was inspired by the tool KoAT [27], which composes
results of alternating size and runtime complexity analyses for ITSs. KoAT
also supports a “bottom-up” technique that corresponds to the approach of
Section 5.3 when restricting it to standard ITSs without (non-tail) recursion.
But in contrast to Section 5.3, KoAT’s support for recursion is very limited, as
it disregards the return values of “inner” calls. Moreover, [27] does not contain
an approach like Theorem 5.11 in Section 5.2 which allows us to obtain size
bounds from techniques that compute runtime bounds.
RaML [82, 83, 84] reduces the inference of resource annotated types (and hence
complexity bounds) for ML programs to linear optimization. Like our technique,
RaML’s support for arithmetic is currently restricted to natural number [85].
With respect to modularity, RaML has two theoretical boundaries [83]: (A) The
number of linear constraints arising from type inference grows exponentially
in the size of the program. (B) To achieve context-sensitivity, functions are
typed differently for different invocations. In our setting, a blow-up similar to
(A) may occur within the used ITS tool, but as the program is analyzed one
function at a time, this blow-up is exponential in the size of a single function
instead of the whole program. To avoid (B), we analyze each function only once.
However, RaML takes amortization effects into account and obtains impressive
results in practice.
C4B [35] adapts RaML’s approach to C programs. However, C4B can only infer
linear bounds automatically and requires user interaction to infer non-linear
bounds. Recently, this limitation has been overcome [34], resulting in the new
tool Pastis which analyzes the complexity of LLVM programs.
Another leading tool for the inference of complexity bounds for recursive integer
programs is CoFloCo [48, 50]. It analyzes cost relations, which correspond to
possibly recursive integer programs where procedures may have several outputs.
The same formalism is analyzed by the earlier tool PUBS [1, 3], which inspired
CoFloCo. To achieve modularity, both PUBS and CoFloCo analyze program
parts independently and use linear invariants to compose the results. So their
approaches differ significantly from Section 5.3, which can also infer non-linear
size bounds. Thus, the technique from Section 5.3 is especially suitable for ex-
amples where non-linear growth of data causes non-linear runtime. For instance,
in Example 5.31 the quadratic size bound for times is crucial to prove a (tight)
cubic runtime bound with the technique of Section 5.3. Consequently, linear
invariants are not sufficient and hence CoFloCo and PUBS fail for this RNTS.
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However, CoFloCo’s amortized analysis often results in very precise bounds,
i.e., it is orthogonal to our approach. Similarly, PUBS often infers very precise
concrete bounds, whereas we mainly focus on asymptotic bounds. Moreover,
both PUBS and CoFloCo can also infer best-case lower bounds, which is not
possible with our technique. Also, the cost expressions resp. cost structures
which are used by PUBS resp. CoFloCo are more expressive than the expressions
supported by our technique. We chose such a restrictive format for two reasons:
First, it is supported by all existing complexity analysis tools for ITSs or related
formalisms, such that our approach remains independent from the underlying
analyzer for linear ITSs. Second, our approach exploits that our expressions
are monotonic and extending it to richer, non-monotonic expressions is non-
trivial. Finally, the semantics of cost relations allow to handle tail and non-tail
recursion uniformly, whereas non-tail recursion is challenging in our setting.
Furthermore, there are various other tools to analyze the complexity of non-
recursive integer programs, i.e., ITSs or related formalism. Examples include
ABC [21], Loopus [114], Rank [8], and SPEED [72]. These approaches and our
technique from Section 5.3 complement each other, since they lack support for
recursive programs, whereas our technique relies on existing tools for the anal-
ysis of non-recursive integer programs in order to analyze (non-tail) recursive
programs.
Finally, the recent tool CAMPY [116] verifies that a given expression is a
(concrete) upper bound for the analyzed program. In contrast, our technique
infers upper bounds automatically.
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5.5 Experiments

We implemented our contributions in the tool AProVE [62]. As mentioned in
Section 1.3.2, the technique presented in this chapter was initially developed as
backend for a transformation from term rewrite systems to integer programs
[103]. Thus, we evaluated its power on 919 examples of the category “Runtime
Complexity - Innermost Rewriting” of the Termination and Complexity Compe-
tition 2016 [121] which were transformed to RNTS by AProVE as described in
[103]. Here, we excluded the 103 examples where AProVE shows irc(n) ∈ Ω(ω).
Note that, in this category, the examples from the Termination and Complexity
Competition 2017 are a subset of the examples from 2016. All TRSs were pre-
processed with the technique from [53] to remove rules which are not reachable
from basic terms.
In our experiments, we analyzed the RNTSs resulting from AProVE’s trans-
formation with AProVE’s implementation of the technique from Section 5.3
and with CoFloCo. Thereby, AProVE used the external tools CoFloCo and
KoAT to compute runtime bounds for the ITSs resulting from the technique
in Section 5.3. We did not compare with RaML and Pastis, since their input
languages (ML resp. LLVM) differ significantly from our RNTSs and CoFloCo’s
cost relations. Moreover, Pastis is not publicly available at the moment.
While we restricted ourselves to polynomial arithmetic for simplicity in this
thesis, KoAT’s ability to prove exponential bounds for ITSs also enables AProVE
to infer exponential upper bounds for some RNTSs. Thus, the capabilities of the
back-end ITS tool determine which kinds of bounds can be derived by AProVE.
Table 5.1 shows the results of our experiments. We used a timeout of 60
seconds per example. While CoFloCo often infers more precise bounds than
AProVE (CoFloCo proves a smaller bound than AProVE in 113 cases), the results
also clearly show that both approaches are orthogonal: In 36 cases, AProVE
successfully infers an upper bound, whereas CoFloCo fails. In 24 of these cases,
AProVE infers at least one super-linear size bound, i.e., these examples are
potentially infeasible for CoFloCo which just infers linear invariants and hence
cannot track super-linear growth of data. From the 10 examples where AProVE
infers an exponential upper bound and CoFloCo fails, AProVE infers exponential

CoFloCo

AP
ro

VE

rc(n) O(1) O(n) O(n2) O(n3) O(n4) O(n5) O(n10) EXP O(ω)
O(1) 43 – – – – – – – –
O(n) 1 158 – – – – – – 2
O(n2) – 29 54 – – – – – 5
O(n3) – – 2 9 – – – – 16
O(n4) – – 1 – – – – – 3
O(n5) – – – – – 2 – – –
O(n10) – – – – – – 1 – –
EXP – 2 – – – – – – 10
O(ω) – 24 48 6 – – – – 503

Table 5.1: AProVE vs. CoFloCo

119



Chapter 5. Upper Bounds for RNTSs

size bounds in 8 cases, i.e., AProVE can also handle cases where exponential
runtime is caused by exponential growth of data. According to [49], this kind
of reasoning has so far only been supported by KoAT. See Appendix B for a
list of those examples where our technique succeeds by computing super-linear
polynomial resp. exponential size bounds, whereas CoFloCo fails.
The versions of AProVE, CoFloCo, and KoAT that we used as well as the
strategies to run AProVE with CoFloCo resp. the technique from Section 5.3 as
backend are available at [52].
One of the most important reasons why CoFloCo outperforms AProVE in many
cases is AProVE’s restriction to monotonic bounds. To see this, consider the
following example.

Example 5.38. The technique from Section 5.3 cannot infer a runtime
bound for the RNTS consisting of the following two rules:

f(x) 1−→ f(minus(x, 1))
minus(x, y) 1−→ x′ [x′ = x− y]

The reason is that AProVE cannot infer sz(minus) = x− y, since x− y is not
monotonic. Instead, AProVE can at best deduce the imprecise size bound
sz(minus) = x. Then eliminating the inner call to minus in the first rule
yields the non-terminating rule f(x) 2−→ f(tv) [tv ≤ x].

In contrast, the cost structures which are internally used by CoFloCo may also
contain non-monotonic expressions. Thus, in future work one should extend
the technique presented in this chapter to less restrictive classes of size and
runtime bounds.
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5.6 Conclusion and Future Work

We presented a modular approach to lift any technique that infers upper bounds
on the runtime complexity of ITSs to handle (non-nested, but otherwise ar-
bitrary) recursion as well. The main idea of our approach is to summarize
functions via runtime and size bounds. Then the rules for a successfully ana-
lyzed function f can be replaced by a trivial rule which immediately evaluates
to an arithmetic expression. Afterwards, calls of previously analyzed functions
can be eliminated via chaining. In this way, sub-RNTSs with nested function
calls are transformed into ITSs which can be analyzed by existing tools. These
existing tools are also used to compute size bounds via a novel encoding. Given
an ITS P, it constructs an ITS P↑ whose runtime corresponds to the size of
the result computed by P.
The main challenge of our approach is to handle functions which behave non-
monotonically, i.e., functions whose runtime or result might decrease for greater
arguments. To this end, we use different techniques to eliminate inner calls
(i.e., calls whose result is passed to other functions) and outer calls (i.e., calls
that take the result of other functions as arguments) of previously analyzed
functions.
Clearly, our approach is useful for the analysis of recursive arithmetic programs
in general. However, building upon a suitable size abstraction which maps data
structures to natural numbers, it can also be used to analyze other kinds of
programs like term rewrite systems [103]. Finally, to infer runtime bounds, we
also compute size bounds, which may be useful on their own as well.
The main limitations of the presented approach are its restriction to natu-
ral numbers and, as mentioned in Section 5.5, to monotonic bounds. While
support for integers could be achieved by computing bounds in terms of the
absolute values of the program variables, this approach has serious restrictions
w.r.t. precision. To see this, consider the following variant of Example 5.38.

Example 5.39. Assume that the variables in the following rewrite system
range over Z.

f(x) 1−→ f(minus(x, 1)) [x > 0]
minus(x, y) 1−→ x− y

In terms of the absolute values of x and y, the optimal size bound for minus
is |x|+ |y|. So while we failed to infer that evaluating minus(x, 1) decreases
the value of x in Example 5.38, we now even fail to infer that evaluating
minus(x, 1) does not increase the value of x.

Hence, lifting the presented technique to integers requires a more subtle ap-
proach. Computing lower and upper size bound might be a more promising
idea. Then x− y would be a valid lower as well as upper size bound for minus
in Example 5.39. However, x− y is not monotonic. Thus, this idea essentially
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requires non-monotonic bounds, which shows that the problems of supporting
integers and non-monotonic bounds are interrelated.
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Complexity Analysis of Term Rewrite Systems
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6

Introduction

We now consider term rewrite systems (TRSs), i.e., rewrite systems operating on
tree-shaped data structures. As explained in Section 1.2, such rewrite systems
are an important tool for the analysis of programs operating on data structures
like trees or lists.
There exist numerous methods to infer upper bounds for the runtime complexity
of TRSs [15, 79, 86, 87, 105, 125, 131]. While we also present a new technique
which is specific to upper bounds in Chapter 10, we start with the first auto-
matic approaches to infer lower bounds for the runtime complexity of TRSs in
Chapters 8 and 9 after introducing preliminaries in Chapter 7. The technique
presented in Chapter 11 has applications for both, lower and upper bounds.
While most methods to infer upper bounds are adaptions of termination tech-
niques, our approaches for the inference of lower bounds are related to methods
that prove non-termination of TRSs. The loop detection technique from Chap-
ter 8 is based on decreasing loops, a generalization of loops. Loops are used to
prove non-termination of TRSs [67, 108, 125, 132, 134], i.e., the existence of
a loop gives rise to a non-terminating rewrite sequence. In contrast, decreas-
ing loops give rise to families of rewrite sequences with linear, exponential, or
infinite runtime complexity.
The induction technique from Chapter 9 uses automated induction proofs to
show the existence of certain families of rewrite sequences and infers lower
bounds on the complexity of these families by analyzing the structure of the
inductive proofs. It is inspired by the technique to prove non-termination of
(possibly non-looping) TRSs from [41]. Both techniques generate “meta-rules”
(called rewrite lemmas in this thesis) which represent infinitely many rewrite
sequences. However, our rewrite lemmas are more general than the meta-rules
in [41], as they can be parameterized by several variables.
Chapter 10 results from the observation that loop detection can prove linear
lower bounds in almost all cases. Thus, in Chapter 8 we investigate the question
if the existence of a linear lower bound is semi-decidable for certain classes of
TRSs. For the sake of completeness, we also consider the following, closely
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related question: Is it semi-decidable whether a TRS has constant runtime
complexity? A positive answer to this question, together with a semi-decision
procedure, is presented in Chapter 10. In combination with our loop detection
technique, it can be used to prove or disprove constant complexity in almost
all cases (cf. Chapter 12).
Chapter 11 presents a powerful sufficient criterion to prove that innermost and
full runtime complexity coincide. In this way, all existing (and future) tech-
niques for the inference of upper bounds on the innermost runtime complexity
also become applicable for the inference of upper bounds on the full runtime
complexity of a large class of term rewrite systems. Dual, techniques for the
inference of lower bounds on the full runtime complexity can also be used to
analyze the innermost runtime complexity of term rewrite systems. In the case
of upper bounds, this results in a significant improvement of the state of the art,
as shown in the extensive experimental evaluation of all presented techniques
for term rewriting in Chapter 12.
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Preliminaries

Term Rewrite Systems We now introduce our program model, i.e., term
rewrite systems. A term rewrite system is a set of rules where the left-hand
sides and the right-hand sides are terms.

Definition 7.1 (Term Rewrite System). Let Σ be a finite signature and let
V be a set of variables. A term rewrite rule over Σ and V is of the form
` k−→ r where ` ∈ T (Σ,V)\V, r ∈ T (Σ,V(`)), and k ∈ {0, 1}. A term rewrite
system (TRS) over Σ and V is a set of term rewrite rules over Σ and V.
A TRS is called left linear (resp. right linear) if ` (resp. r) is linear for each
` k−→ r ∈ R. It is linear if it is left and right linear. If all of its rules have
cost 1, then we call a TRS ordinary.
We usually just write ` −→ r instead of ` 1−→ r. Moreover, we lift Σ to rules
by defining Σ(` k−→ r) = Σ({`, r}) and we lift V to rules analogously. Finally,
we define root(` k−→ r) = root(`).

Note that we only allow costs 0 and 1. This corresponds to the usual notion of
relative term rewriting, where the TRS R is partitioned into two sets R1 and
R0 and the complexity of a rewrite sequence is defined to be the number of
−→R1

-steps (i.e., the rules in R1 have cost 1 and the rules in R0 have cost 0).

Example 7.2 (TRS). The following rules constitute the TRS Rcontains which
checks if a list of natural numbers (encoded as terms) contains zero.

α0 : contains(nil) → false
α1 : contains(cons(succ(x), xs)) → contains(xs)
α2 : contains(cons(zero, xs)) → true

The transition relation of TRSs is the term rewrite relation.
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Definition 7.3 (Term Rewrite Relation). LetR be a TRS. We have s k−→R t

if there is a context C, a rule ` k−→ r, and a substitution σ such that C[`σ] = s

and C[rσ] = t. The rewrite step s k−→R t is innermost (s k−→
i R t) if all proper

subterms of `σ are normal forms.
We write s k−→α t (resp. s k−→

i α t) ifR = {α}. Furthermore, we write s k−→R,π t
if π is the unique position of � in C.

Note that −→R and −→
i R are weighted relations, cf. Definition 2.10. In contrast to

the usual relative term rewrite relation (which is defined as −→∗R0
◦ −→R1

◦ −→∗R0

where R0 contains all rules with cost 0 and R1 contains all rules with cost R1),
Definition 7.3 also allows rewrite sequences with cost 0. However, since such
rewrite sequences are clearly irrelevant for worst-case complexity (since the
image of the runtime complexity function does not contain negative numbers
and thus 0 is a trivial lower bound), all results from Part III immediately carry
over to relative term rewriting.

Example 7.4 (Term Rewrite Relation). We have

contains(cons(succ(zero), cons(zero, nil))) 1−→α1
contains(cons(zero, nil))

1−→α2
true.

Since both of these rewrite steps are innermost, we also have

contains(cons(succ(zero), cons(zero, nil))) 2−→
i

∗
Rcontains

true.

By essentially replacing matching with unification in the definition of the term
rewrite relation −→R, we obtain the narrowing relation. Narrowing a term t

allows us to systematically explore how instances tσ of t can be reduced with
−→R.

Definition 7.5 (Narrowing Relation). Let R be a TRS. We have s σ

R t

if there is a position π ∈ pos(s) with s|π /∈ V and a (variable-renamed) rule
` k−→ r ∈ R such that σ = mgu(`, s|π) and s[r]πσ = t. We write s σ ∗

R t if
s

σ1
R . . .

σn

R t and σ = σ1 � . . . � σn. Moreover, we write s R t if the
substitution σ is irrelevant.

Example 7.6. For the TRS from Example 7.2, we have, e.g.,

contains(xs) {xs/nil}

Rcontains
false,

contains(xs) {xs/cons(succ(x),xs′)}

Rcontains
contains(xs′), and

contains(xs) {xs/cons(zero,xs′)}

Rcontains
true.

The function symbols of a TRS can naturally be partitioned into those function
symbols which represent algorithms (like contains) and those which represent
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data (like succ and zero). This partitioning is captured by the notions of “defined
symbols” and “constructors”.

Definition 7.7 (Constructors and Defined Symbols). Let R be a TRS over
Σ. We call Σd(R) = {root(α) | α ∈ R} the defined symbols and Σc(R) =
Σ \ Σd(R) the constructors of R. Σc(t) resp. Σd(t) is the set of all defined
symbols resp. constructors occurring in t.

We lift Σc and Σd to rules and sets of terms like Σ.

Example 7.8 (Constructors and Defined Symbols). If

Σ = {contains, zero, succ, nil, cons, true, false},

then the defined symbols of Rcontains are Σd(Rcontains) = {contains} and its
constructors are Σc(Rcontains) = {zero, succ, nil, cons, true, false}.

To analyze the complexity of a TRS, we sometimes proceed bottom up, i.e., we
analyze auxiliary functions before their callers. As in Section 5.3, we use call
graphs to formalize the notion “bottom up”.

Definition 7.9 (Call Graph). Let R be a TRS. The node set of the call
graph of R is Σd(R) and its edge set is

{(f, g) | ` −→ r ∈ R, f ∈ Σd(`), g ∈ Σd(r)}.

We write f A g if there is an non-empty path from f to g in the call graph of
R and f w g if f A g or f = g.

So the call graph of Rcontains consists of a single node for contains with a self
loop. The following example shows a slightly more interesting call graph.

Example 7.10 (Call Graph of Rfib). Consider the following TRS Rfib which
computes the Fibonacci numbers.

β0 : add(zero, y) → y

β1 : add(succ(x), y) → add(x, succ(y))
β2 : fib(zero) → zero
β3 : fib(succ(zero)) → succ(zero)
β4 : fib(succ(succ(x))) → add(fib(succ(x)), fib(x))

Its call graph is fib add . Hence, a bottom-up analysis of Rfib
would analyze add before fib.
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When analyzing the complexity of a program, then one is usually interested in
the cost of evaluating a function (i.e., a defined symbol) applied to data (i.e.,
terms built from constructors). Hence, we exclude start terms like, e.g.,

cons(contains(. . .), cons(contains(. . .), . . .)) (7.1)

that correspond to several evaluations of a function. More precisely, we restrict
our attention to rewrite sequences starting with basic terms.

Definition 7.11 (Basic Term [79]). Let R be a TRS over Σ. A term f(t)
is basic w.r.t. R if f ∈ Σd(R) and t ⊆ T (Σc(R),V). The set of all basic
terms w.r.t. R is Tbasic(R). If ` ∈ Tbasic(R) for all ` k−→ r ∈ R, then R is a
constructor system.

If one also considers start terms like (7.1) (i.e., if one considers arbitrary start
terms), then the resulting notion of complexity is known as derivational com-
plexity, whereas the techniques presented in this thesis analyze the runtime
complexity [79] of a TRS. However, since the runtime complexity of a TRS is a
lower bound on its derivational complexity, the techniques for the inference of
lower bounds on the runtime complexity of TRSs from Chapter 8 and Chapter 9
immediately apply to derivational complexity, too.
So we are interested in the cost of −→R-sequences starting with basic terms, i.e.,
we have fixed the set of start terms and the weighted relation we are interested
in. The only missing piece in order to define the canonical complexity problem
of a TRS is a suitable size measure. For term rewriting, the established size
measure is term size.

Definition 7.12 (Term Size). Let Σ be a signature and let V be a set of
variables. We define ‖·‖t : T (Σ,V)→ N as follows:

‖t‖t =
{

1 +
∑
‖t‖t if t = f(t), f ∈ Σ

1 if t ∈ V

Now we can defined the canonical complexity problem of a TRS.

Definition 7.13 (Canonical Complexity Problem of TRSs). Let R be a
TRS. The canonical complexity problem of R is

cp(R) = (Tbasic(R),−→R, ‖·‖t).

The innermost canonical complexity problem of R is

cpi(R) = (Tbasic(R),−→
i R, ‖·‖t).
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Thus, the canonical complexity problem of Rcontains is

cp(Rcontains) = (Tbasic(Rcontains),−→Rcontains
, ‖·‖t).

Turing Machines Several proofs in Part III rely on reductions from Turing
machines.

Definition 7.14 (Turing Machine). A triple M = (Q,Γ, δ) where Q is a
finite set of states, Γ is the finite tape alphabet, � ∈ Γ is the blank symbol,
and δ : (Q × Γ) → (Q × Γ × {L,R}) is the transition function is called a
Turing machine. A configuration of M has the form (q, w, a, w′) with q ∈ Q,
w,w′ ∈ Γω, and a ∈ Γ. The transition function δ induces a transition relation
−→M on configurations where (q1, w1, a1, w

′
1) −→M (q2, w2, a2, w

′
2) if either

• w1 = a2.w2, w
′
2 = b.w′1, and δ(q1, a1) = (q2, b, L) or

• w2 = b.w1, w
′
1 = a2.w

′
2, and δ(q1, a1) = (q2, b, R).

The meaning of a configuration (q, w, a, w′) is that q is the current state, the
symbol at the current position of the tape is a, the symbols right of the current
position are described by the infinite word w′, and the symbols left of it are
described by the infinite word w. To ease the formulation, if w = b.w then this
means that b is the symbol directly left of the current position, i.e., w is the
word obtained when reading the symbols on the tape from right to left.
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Lower Bounds for Term Rewriting by Loop
Detection

As mentioned in Chapter 6, many non-termination techniques for TRSs try to
detect loops. In this section, we show how to adapt such techniques in order to
infer lower complexity bounds.
In Section 8.1 we adapt the notion of loops to prove linear lower bounds. Sec-
tion 8.2 extends this approach to exponential bounds. Thus, the presented
technique is particularly suitable to detect families of runs with exponential
complexity in programs operating on tree-shaped data structures, cf. Section 1.2.
Such families of program runs witness bugs or denial of service vulnerabilities
in many cases.
Since our technique from Section 8.1 can prove linear lower bounds for al-
most all TRSs which have at least linear complexity, the question whether
rccp(R)(n) ∈ Ω(n) is decidable arises. Consequently, this question is investi-
gated in Section 8.3. Finally, we adapt our technique to innermost rewriting
in Section 8.4, discuss related work in Section 8.5, and conclude in Section 8.6.
An extensive experimental evaluation of the presented technique can be found
in Chapter 12.
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8.1 Loop Detection for Linear Bounds

A loop is a reduction sequence s k−→+
R C[sσ] for some context C and some

substitution σ. Each loop gives rise to a non-terminating reduction

s k−→+
R C[sσ] k−→+

R C[Cσ[sσ2]] k−→+
R . . .

Thus, if s is basic and k > 0, then the existence of a loop proves rccp(R)(n) ∈
Ω(ω). The idea of the technique in this section is to detect rewrite sequences
which are similar to loops, but at some position π of s, a context D of constant
size is removed (i.e., we want to detect so-called decreasing loops). Moreover,
we are not interested in rewrite sequences with cost 0, i.e., each “iteration” of
the decreasing loop must have cost k > 0. Hence, we want to find infinite
families of rewrite sequences of the form

s[Dn[t]]π k−→+
R C1[s[Dn−1[t]]πσ] D s[Dn−1[t]]πσ

k−→+
R C2[s[Dn−2[t]]πσ2] D s[Dn−2[t]]πσ2

k−→+
R ◦ D . . . k−→+

R ◦ D s[t]πσn.

Again, s′ D s means that s is a subterm of s′, cf. Definition 2.3. If there is
a decreasing loop, then the runtime complexity of R is at least linear, i.e.,
rccp(R)(n) ∈ Ω(n). To find such families of rewrite sequences, we look for a
rewrite step of the form s[D[x]]π k−→R C[s[x]πσ] for a variable x. Then the term
s[Dn[x]]π starts a reduction of length n. This term is obtained by applying the
substitution θn with θ = {x/D[x]} to s[x]π.

Example 8.1 (Decreasing Loop). The rule α1 ∈ Rcontains removes the con-
text D = cons(succ(x),�) around the variable xs in every rewrite step. The
size of this context is constant. Thus, if one starts with a context Dn of size
3 · n, then one can perform n rewrite steps to remove this context, which
shows rccp(R)(n) ∈ Ω(n).

Note that the variable xs occurs exactly once in the left-hand side

` = contains(cons(succ(x), xs)),

at position π = 1.2 (i.e., ` is linear). Moreover, this variable also appears in the
right-hand side r at a position ξ = 1 that is above π (i.e., ξ < π). Thus, every
rewrite step removes the context that is around xs in `|ξ = cons(succ(x), xs).
Let ` be the term that results from ` by replacing the subterm `|ξ by the
variable xs, i.e., ` = `[xs]ξ = contains(xs). Moreover, let θ be the substitution
that replaces xs by `|ξ again (i.e., θ = {xs/cons(succ(x), xs)}). Suppose that
`σ = r for some matcher σ that does not instantiate the variables in `|ξ (i.e.,
σ does not interfere with θ). A rewrite rule `→ r satisfying these conditions
is called a decreasing loop. In our example, ` = contains(xs) matches the right-
hand side r = contains(xs) with the matcher σ = id, i.e., with the identical
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substitution. Thus, rewriting `θ = ` results in an instance of ` again (i.e., in
r = `σ). Hence, every decreasing loop results in a rewrite sequence of linear
length: if one starts with `θn, then this rewrite step can be repeated n times,
removing one application of θ in each step. More precisely, we have

`θn = `θn−1 k−→R rθn−1 = `σθn−1 = `θn−1σ′ for some substitution σ′,

as σ does not interfere with θ. Hence, in our example, the term `θn =
contains(Dn[xs]) with D = cons(succ(x),�) starts a reduction of length n.
Based on this idea, three improvements enhance the applicability of the resulting
technique: First, it suffices to require that ` matches a subterm r of the right-
hand side (i.e., the right-hand side may have the form C[r] for some context
C). Second, instead of creating ` by replacing one subterm `|ξ of ` with a
variable x ∈ V(`|ξ), we can replace several subterms `|ξ1 , . . . , `|ξm with variables
xi ∈ V(`|ξi). Here, ξ1, . . . , ξm must be independent positions, i.e., we have
ξi 6≤ ξj and ξj 6≤ ξi whenever i 6= j. The structure of `, `, and r is illustrated
in Figure 8.1. Here, a dashed arrow labeled with a substitution like ` θ

99K `
means that applying the substitution θ to ` results in `. Third, instead of
checking whether a single rule ` k−→R C[r] is a decreasing loop, we can also
consider rewrite sequences ` k−→+

R C[r]. To find such rewrite sequences, we
repeatedly narrow the right-hand sides of those rules whose left-hand sides are
basic. This leads to Definition 8.2. (Note that here, (a) implies that ξ1, . . . , ξm
are independent positions, since the r|ξi are pairwise different variables.)

Definition 8.2 (Decreasing Loop). Let ` k−→+
R C[r] for some k > 0, some

linear basic term `, and some r /∈ V. We call ` k−→+
R C[r] a decreasing loop if

there are pairwise different variables x1, . . . , xm (with m ≥ 0) and positions
π1, . . . , πm with xi = `|πi for all i ∈ {1, . . . ,m} such that:

(a) for each xi, there is a ξi < πi such that r|ξi = xi

(b) there is a substitution σ with `σ = r for ` = `[x1]ξ1 . . . [xm]ξm

We call σ the result substitution, θ = {xi/`|ξi | i ∈ {1, . . . ,m}} the pumping
substitution, and ξ1, . . . , ξm the abstracted positions of the decreasing loop.

The following TRS has a decreasing loop with a non-trivial result substitution.

Example 8.3 (Result Substitution). Consider the TRS Radd consisting of
the add rules from Example 7.10.

add(zero, y)→ y add(succ(x), y)→ add(x, succ(y))

The second rule is a decreasing loop with ` = add(x, y), ξ = 1, θ =
{x/succ(x)}, and σ = {y/succ(y)}. Indeed, we have `θn →n

Radd
`σn.
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Figure 8.1: Decreasing Loop

Example 8.4 shows that requiring linearity in Definition 8.2 is crucial to ensure
that the existence of a decreasing loop implies rccp(R)(n) ∈ Ω(n).

Example 8.4 (Linearity). To see why we require linearity of `, consider

R = {f(succ(x), x)→ f(x, x)}.

If non-linear terms ` were allowed by Definition 8.2, then R’s only rule
f(succ(x), x)→ f(x, x) would be a decreasing loop with the abstracted posi-
tion ξ = 1. Thus, we would falsely conclude a linear lower runtime bound
although rccp(R) is constant.

Finally, Example 8.5 shows why we require that the right-hand side of a de-
creasing loop is not a variable.

Example 8.5 (Non-Variable Right-Hand Sides). The requirement r /∈ V in
Definition 8.2 is needed to ensure that θ instantiates variables by constructor
terms. Otherwise, for the TRS R = {f(x) → x} we would falsely detect a
decreasing loop although rccp(R) is constant. The reason is that for ` = x

and θ = {x/f(x)}, `θn starts a rewrite sequence of length n, but `θn is not a
basic term.

Theorem 8.6 states that any decreasing loop gives rise to a linear lower bound.

Theorem 8.6 (Linear Lower Bounds by Loop Detection). If a TRS R has
a decreasing loop, then we have rccp(R)(n) ∈ Ω(n).

Proof. For all n ∈ N and any substitution δ, we prove `θnδ k−→+
R ◦ D `θn−1δ′

136



8.1. Loop Detection for Linear Bounds

for some substitution δ′. Thus, these rewrite steps can be repeated n times.
We have

`θnδ = `θn−1δ k−→+
R C[r]θn−1δ D rθn−1δ

= `σθn−1δ
(?)= `θn−1(σ � θn−1)|dom(σ)δ = `θn−1δ′

for the substitution δ′ = (σ � θn−1)|dom(σ) � δ. The step marked with (?) holds
since σ does not instantiate variables in the domain or range of θ. To see why
dom(σ) is disjoint from

dom(θ) = {x1, . . . , xm}, (8.1)

note that xiσ 6= xi would mean `|ξiσ 6= r|ξi . As `|ξiσ = `σ|ξi , this would imply
`σ|ξi 6= r|ξi , which contradicts `σ = r. To see why dom(σ) is disjoint from
rng(θ), note that by definition of θ we have

V(rng(θ)) =
m⋃
i=1
V(`|ξi). (8.2)

Since ` is linear, by definition of ` we have

V(`) = (V(`) \
⋃m
i=1 V(`|ξi)) ∪ {x1, . . . , xm}

= (V(`) \ V(rng(θ))) ∪ dom(θ) by (8.1) and (8.2). (8.3)

Clearly, the substitution σ that matches ` to r can be chosen such that its
domain only includes variables occurring in `. Thus, (8.3) implies

dom(σ) ⊆ (V(`) \ V(rng(θ))) ∪ dom(θ). (8.4)

Since dom(σ) and dom(θ) are disjoint, (8.4) implies

dom(σ) ⊆ V(`) \ V(rng(θ)).

Hence σ also does not instantiate any variables occurring in the range of θ.
Thus, for each n ∈ N, there is a rewrite sequence with cost k · n starting
with `θn. This term is basic, since the range of θ only contains terms of the
form `|ξi . Each `|ξi is a constructor term, since ξi cannot be the root position,
due to r /∈ V. By construction, θ does not duplicate variables, as ` and thus
`|ξ1 , . . . , `|ξm only contain each xi once. Therefore, we have

∥∥`θn∥∥
t
∈ O(n). If

θ 6= id, then
∥∥`θn∥∥

t
is strictly monotonically increasing in n and we obtain

rccp(R)(n) ∈ Ω(n) by Lemma 4.41. Otherwise, ` k−→+
R C[r] is a loop, which

implies rccp(R)(n) ∈ Ω(ω), since ` is basic and k > 0.

Of course, the linear bound recognized by Theorem 8.6 is just a lower bound.
In particular, as in the proof of Theorem 8.6, if θ = id (i.e., ` = `), then we
have the loop

` k−→+
R C[r] D r = `σ = `σ.
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Thus, there is even an infinite lower bound (i.e., a basic term starts an infinite
reduction). Hence, loops where ` is basic are indeed special cases of decreasing
loops.

Corollary 8.7 (Infinite Lower Bounds by Loop Detection). If there is a
decreasing loop for a TRS R whose pumping substitution is id, then we have
rccp(R)(n) ∈ Ω(ω).

Proof. The corollary holds since we have ` k−→+
R C[r] D r = `σ = `σ.
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We now adapt the criterion of Theorem 8.6 in order to detect exponential lower
bounds. Theorem 8.6 characterizes TRSs where a context around a variable x
is removed in each rewrite step and the same rewrite rule is again applicable
to the right-hand side. We now consider reduction sequences ` k−→+

R r such
that r = C1[r1]ι1 = C2[r2]ι2 for independent positions ι1 and ι2 where both
` k−→+

R C1[r1]ι1 and ` k−→+
R C2[r2]ι2 are decreasing loops. Then each rewrite

step removes some context, but at the same time it creates two redexes on the
right-hand side where the same rewrite rule is applicable again. This give rise
to an (asymptotic) exponential lower bound.

Example 8.8 (Exponential Bound for Fibonacci Numbers). Reconsider the
TRS Rfib from Example 7.10, whose runtime complexity is exponential. In
the rule β4, there are two recursive calls on the right-hand side where each
recursive call gives rise to a decreasing loop. More precisely,

fib(succ(succ(x))) 1−→Rfib
C1[fib(succ(x))]

is a decreasing loop with `1 = fib(succ(x)), pumping substitution θ1 with
xθ1 = succ(x), and result substitution σ1 = id. On the other hand,

fib(succ(succ(x))) 1−→Rfib
C2[fib(x)]

is a decreasing loop with `2 = fib(x), pumping substitution θ2 with xθ2 =
succ(succ(x)), and result substitution σ2 = id.
The two decreasing loops give rise to an exponential lower bound. We have
`1θ

n
1 θ

n
2

1−→Rfib
add(`1θn−1

1 θn2 , `2θ
n−1
1 θn2 ). Note that the pumping substitutions

θ1 and θ2 commute, i.e., θ1 � θ2 = θ2 � θ1. Thus, for the subterm in the
second argument of add, we have `2θn−1

1 θn2 = `2θ2θ
n−1
1 θn−1

2 . Hence after
each application of the recursive fib-rule to `iθn1 θn2 we obtain two new similar
terms where one application of θi has been removed, but 2 ·n−1 applications
of pumping substitutions remain. Since the pumping substitutions commute,
the next reduction step again yields two new similar terms with 2 · n − 2
remaining applications of pumping substitutions. Thus, rewriting `1θ

n
1 θ

n
2

yields a binary “tree” of reductions which is complete up to height n. Hence,
the resulting rewrite sequence has an exponential length.

The commutation of the pumping substitutions is indeed crucial. Otherwise, it
would not be sound to infer an exponential lower bound from the existence of
two independent decreasing loops, as the following example shows.

Example 8.9 (Commutation). Without requiring commutation of the pump-
ing substitutions, we would obtain incorrect exponential bounds for typical
algorithms that traverse trees (the TRSRtraverse below represents the simplest
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possible tree traversal algorithm).

traverse(leaf) → leaf
traverse(tree(xs, ys)) → tree(traverse(xs), traverse(ys))

Each recursive call in the right-hand side of the last rule gives rise to a
decreasing loop. For

traverse(tree(xs, ys)) 1−→Rtraverse
C1[traverse(xs)]

we have `1 = traverse(xs) with the result substitution σ1 = id and the
pumping substitution θ1 = {xs/tree(xs, ys)}. The decreasing loop

traverse(tree(xs, ys)) 1−→Rtraverse
C2[traverse(ys)]

has `2 = traverse(ys) with σ2 = id and θ2 = {ys/tree(xs, ys)]. However, this
does not imply an exponential lower bound. The reason is that θ1 and θ2 do
not commute. Thus, we have `1θn1 θn2

1−→Rtraverse
tree(`1θn−1

1 θn2 , `2θ
n−1
1 θn2 ), but

instead of `2θn−1
1 θn2 = `2θ2θ

n−1
1 θn−1

2 as in Example 8.8, we have `2θn−1
1 θn2 =

`2θ
n
2 . Hence, the resulting runtime is only linear.

The following example shows that in addition to the commutation property of
the pumping substitutions, the result substitution of one decreasing loop must
not interfere with the pumping substitution of the other loop.

Example 8.10 (Interference of Result and Pumping Substitution). The
rule ` → r with ` = f(succ(x), succ(y)) and r = c(f(x, succ(zero)), f(x, y))
gives rise to two decreasing loops. The first one is ` → C1[f(x, succ(zero))]
with `1 = f(x, succ(y)), r1 = f(x, succ(zero)), θ1 = {x/succ(x)}, and σ1 =
{y/zero}. The second one is ` → C2[f(x, y)] with `2 = f(x, y), r2 = f(x, y),
θ2 = {x/succ(x), y/succ(y)}, and σ2 = id. However, this does not imply
an exponential lower bound. The reason is that the domain of the result
substitution σ1 contains the variable y which also occurs in the domain and
range of θ2. Hence, we have:

f(x, succ(y))θn1 θn2 `1θ
n
1 θ

n
2

= f(succ(x), succ(y))θn−1
1 θn2 = `θn−1

1 θn2
→ c(f(x, succ(zero)), f(x, y))θn−1

1 θn2 → C1[r1]θn−1
1 θn2

D f(x, succ(zero))θn−1
1 θn2 D `1σ1θ

n−1
1 θn2

= f(succ(x), succ(zero))θn−2
1 θn2 = `σ1θ

n−2
1 θn2

→ c(f(x, succ(zero)), f(x, zero))θn−2
1 θn2 → C2[r2]σ1θ

n−2
1 θn2

To obtain the desired rewrite sequence of exponential length, each f-term in
the resulting term should again create a binary “tree” of reductions which
is complete up to height n− 2 (as there are still at least n− 2 applications
of each pumping substitution). However, the underlined subterm f(x, zero)

140



8.2. Loop Detection for Exponential Bounds

(i.e., r2σ1) is a normal form. The problem is that the result substitution
σ1 = {y/zero} was applied in the first reduction step and this prevents the
subsequent use of θ2 = {y/succ(y)} in order to turn the subterm f(x, y) of
the right-hand side into a redex again.

In general, after one rule application one obtains the terms `1σ1θ
n−1
1 θn2 and

`2σ2θ2θ
n−1
1 θn−1

2 = `2σ2θ
n−1
1 θn2 , which are “similar” to the start term `1θ

n
1 θ

n
2

up to the result substitutions σ1 and σ2. Therefore, one has to require that
the result substitutions do not interfere with the pumping substitutions. Then
these result substitutions do not prevent the desired exponentially long rewrite
sequence.
The following definition introduces the concept of compatible decreasing loops.
Two decreasing loops are compatible if (a) they result from the same rewrite
sequence, (b) they operate on independent positions of the right-hand side,
(c) the result substitution of each loop does not interfere with the pumping
substitution of the other loop, and (d) their pumping substitutions commute.

Definition 8.11 (Compatible Decreasing Loops). Let ` k−→+
R C[r]ι and ` k−→+

R
C ′[r′]ι′ be decreasing loops with pumping substitutions θ resp. θ′, result
substitutions σ resp. σ′, and abstracted positions ξ1, . . . , ξm resp. ξ′1, . . . , ξ′m′ .
We call ` k−→+

R C[r]ι and ` k−→+
R C ′[r′]ι′ compatible if

(a) C[r]ι = C ′[r′]ι′

(b) ι and ι′ are independent positions

(c) dom(σ) ∩ V(rng(θ′)) = dom(σ′) ∩ V(rng(θ)) = ∅

(d) θ � θ′ = θ′ � θ

Theorem 8.12 shows that several compatible decreasing loops lead to exponential
runtime.

Theorem 8.12 (Exponential Lower Bounds by Loop Detection). If a TRS
R has d ≥ 2 pairwise compatible decreasing loops, then rccp(R)(n) ∈ Ω(cn)
for some c > 0.

Proof. For each j ∈ {1, . . . , d}, let θj be the pumping substitution and σj be the
result substitution of the decreasing loop ` −→+

R Cj [rj ]ιj where r = Cj [rj ]ιj . If
ξ1, . . . , ξm are the abstracted positions of the jth decreasing loop and xi = rj |ξi
for all i ∈ {1, . . . ,m}, then let `j = `[x1]ξ1 . . . [xm]ξm . Thus, we have `jθj = `

and `jσj = rj .
For all j ∈ {1, . . . , d}, all n1, . . . , nd ∈ N, and any substitution δ, `jθn1

1 . . . θndd δ

starts a reduction of asymptotic length dmin(n1,...,nd). To show this, we prove
`jθ

n1
1 . . . θndd δ →+

R q for some q such that for all k ∈ {1, . . . , d}, there is a
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substitution δ′k with q|ιk = `kθ
n1
1 . . . θ

nj−1
j . . . θnkd δ′k.

Hence, q contains d terms of the form `kθ
n1
1 . . . θ

nj−1
j . . . θnkd δ′k at independent

positions. We have

`jθ
n1
1 . . . θndd δ

(†)= `jθjθ
n1
1 . . . θ

nj−1
j . . . θndd δ =

`θn1
1 . . . θ

nj−1
j . . . θndd δ →+

R rθn1
1 . . . θ

nj−1
j . . . θndd δ = q

where (†) holds as θj commutes with all θi by Definition 8.11 (d). For any
k ∈ {1, . . . , d},

q|ιk = rkθ
n1
1 . . . θ

nj−1
j . . . θndd δ

= `kσkθ
n1
1 . . . θ

nj−1
j . . . θndd δ

(?)= `kθ
n1
1 . . . θ

nj−1
j . . . θndd (σk � θn1

1 � . . . � θ
nj−1
j � . . . � θndd )|dom(σk)δ

= `kθ
n1
1 . . . θ

nj−1
j . . . θndd δ′k

for the substitution δ′k = (σk � θn1
1 � . . . � θ

nj−1
j � . . . � θndd )|dom(σk) � δ.

For the step marked with (?), as in the proof of Theorem 8.6, σk does not
instantiate variables in the domain or the range of θk. By Definition 8.11 (c)
it also does not instantiate variables in the domain or the range of any other
pumping substitution θi.
Since q contains `kθn1

1 . . . θ
nj−1
j . . . θndd δ′k at independent positions ιk (for k ∈

{1, . . . , d}), this results in a d-ary tree of rewrite sequences with root `jθn1 . . . θnd ,
j ∈ {1, . . . , d}, which is complete up to height n ∈ N. The reason is that in the
beginning, there are n substitutions θj for each j ∈ {1, . . . , d} and each rewrite
step removes one of them.

Hence, the tree has at least
⌊
dn+1−1
d−1

⌋
nodes. By Lemma A.2,1 θ1 � . . . � θd does

not duplicate variables. If θ1 � . . . � θd = id, then we have rccp(R)(n) ∈ Ω(ω)
as in the proof of Theorem 8.6. Otherwise,

∥∥`jθn1 . . . θnd∥∥t is linear and strictly
monotonically increasing in n and we get rccp(R)(n) ∈ Ω(cn) for some c > 1 by
Lemma 4.41.

1Note that Lemma A.2 is only needed to avoid the additional requirement that θ � θ′
does not duplicate variables in Definition 8.11, which is superfluous, as it is implied by
the remaining properties of compatible decreasing loops. As its proof is lengthy and quite
technical, it is only presented in the appendix of this thesis.
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In practice, loop detection is an extremely powerful technique for the inference
of linear lower bounds, cf. Chapter 12. In fact, we are not aware of an ordinary
left-linear constructor TRS whose runtime complexity is at least linear, but
which does not have a decreasing loop. Thus, it is natural to ask if every such
TRS has a decreasing loop, i.e., if loop detection is a semi-decision procedure
to check if rccp(R)(n) ∈ Ω(n) holds for a given ordinary left-linear constructor
TRS R.
However, as shown by the following theorem, this is not the case. The reason
is that even for quite restricted classes of TRSs R it is not semi-decidable if
rccp(R)(n) ∈ Ω(n) holds. This can be proven by a reduction of the immortality
problem for Turing machines (cf. Definition 7.14) to the problem of linear
lower bounds, where immortality of Turing machines is known to be not semi-
decidable [88]. A Turing machine is mortal if it terminates for every initial
configuration, including configurations with infinitely many non-blank symbols
on the tape.

Theorem 8.13 (Undecidability of Linear Bounds). It is not semi-decidable
if rccp(R)(n) ∈ Ω(n) holds for ordinary linear TRSs R where `, r ∈ Tbasic(R)
for all rewrite rules ` −→ r ∈ R. Hence for this class of TRSs, loop detection
is not complete for the inference of linear lower bounds.

To prove Theorem 8.13, we need several auxiliary lemmas. In the following,
we restrict ourselves to ordinary, linear, and basic TRSs R, i.e., TRSs which
only contain rules ` −→ r where both ` and r are basic. We first show that non-
termination of the narrowing relation is equivalent to the existence of a linear
lower bound on the complexity of the rewrite relation. The crucial observation
for the “if” direction is that every rewrite sequence with basic terms gives rise
to a corresponding narrowing sequence starting with a basic term f(x1, . . . , xk).
For our restricted class of TRSs, a basic term s narrows to t if and only if there
is a variable-renamed rule `→ r ∈ R with σ = mgu(s, `) and t = rσ.

Lemma 8.14 (From Rewrite Sequences to Narrowing Sequences). Let m ∈ N
and let s ∈ Tbasic(R) with root(s) = f such that s −→mR t. Then we have

f(x1, . . . , xk) m
R t′

for pairwise different variables x1, . . . , xk, where t′ matches t.

Proof. We prove the more general Lemma 10.3 in Chapter 10.

For the “only if” direction, we show that a narrowing sequence of length n

induces a rewrite sequence of the same length where the size of the start term
is linear in n. To this end, we need the following two lemmas, which allow
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us to estimate the size of the start term of the rewrite sequence induced by a
narrowing sequence.

Lemma 8.15 (Size of Unified Terms). Let s, t ∈ T (Σ,V) be linear terms
such that V(s) ∩ V(t) = ∅ and let mgu(s, t) = θ. Then∑

x∈V(s)∩dom(θ)

‖xθ‖t ≤ ‖t‖t.

Proof. We use induction on s. First assume s = x ∈ V. If x /∈ dom(θ), then the
claim is trivial. If x ∈ dom(θ), then we have xθ = t and hence ‖xθ‖t = ‖t‖t.
Now assume s = f(s1, . . . , sn). If t = y ∈ V, then we have θ = {y/f(s1, . . . , sn)}
and thus the claim is trivial. Assume t = f(t1, . . . , tn). Note that s and t have
the same root symbol, since they are unifiable. By the induction hypothesis,
we know ∑

x∈V(si)∩dom(θi)

‖xθi‖t ≤ ‖ti‖t

for all i ∈ {1, . . . , n} where θi is the mgu of si and ti. Since s and t are linear,
we have θ = θ1 � . . . � θn. Thus we get∑

x∈V(s)∩dom(θ)

‖xθ‖t =
∑

i∈{1,...,n}
x∈V(si)∩dom(θi)

‖xθi‖t ≤
∑

i∈{1,...,n}

‖ti‖t < ‖t‖t

as desired.

Lemma 8.16. Let t0
σ1
R . . .

σn

R tn be a narrowing sequence where t0 is
linear. Then ‖t0σ1 . . . σn‖t ≤ ‖t0‖t + n ·max{‖`‖t | `→ r ∈ R}.

Proof. We use induction on n. If n = 0, then the claim is trivial. If n > 0, we
get

‖t0σ1 . . . σn−1‖t ≤ ‖t0‖t + (n− 1) ·max{‖`‖t | `→ r ∈ R} (8.5)

by the induction hypothesis. Note that we have V(tn−1) ⊆ V(t0σ1 . . . σn−1)
since t0σ1 . . . σn−1 −→∗R tn−1. Let ` → r ∈ R be the rule which is used for
the narrowing step tn−1 R tn where ` and t0σ1 . . . σn−1 are variable disjoint
without loss of generality. Since R and t0 are linear, `, tn−1, and t0σ1 . . . σn−1
are linear. Thus, since σn is the mgu of tn−1 and `, we have∑

x∈V(tn−1)∩dom(σn)

‖xσn‖t ≤ ‖`‖t (8.6)

by Lemma 8.15. Since ` and t0σ1 . . . σn−1 are variable disjoint, we have x /∈
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dom(σn) for all x ∈ V(t0σ1 . . . σn−1) \ V(tn−1) and thus (8.6) implies∑
x∈V(t0σ1...σn−1)∩dom(σn)

‖xσn‖t ≤ ‖`‖t.

Hence, by linearity of t0σ1 . . . σn−1, we get ‖t0σ1 . . . σn‖t ≤ ‖t0σ1 . . . σn−1‖t +
‖`‖t. With (8.5), this implies ‖t0σ1 . . . σn‖t ≤ ‖t0‖t+n ·max{‖`‖t | `→ r ∈ R}
as desired.

Lemma 8.16 gives rise to the following interesting corollary, which states that
there are no ordinary, linear, and basic TRSs with sub-linear, but non-constant
complexity.

Corollary 8.17. We have

rccp(R)(n) ∈ Ω(n) if and only if rccp(R)(n) /∈ O(1)

for all ordinary, linear, and basic TRSs R.

Proof. Clearly, rccp(R)(n) ∈ Ω(n) implies rccp(R)(n) /∈ O(1). To see why
rccp(R)(n) /∈ O(1) also implies rccp(R)(n) ∈ Ω(n), assume rccp(R)(n) /∈ O(1)
and rccp(R)(n) /∈ Ω(n). Then rccp(R)(n) /∈ O(1) implies that there are rewrite
sequences s1 −→1

R t1, s2 −→2
R t2, . . . where s1, s2, . . . are basic. As R is linear,

we may assume that s1, s2, . . . are also linear. Finally, as Σd(R) is finite, we
may also assume root(s1) = root(s2) = . . . = f. Then by Lemma 8.14, there
are narrowing sequences f(x) σ1 1

R t′1, f(x) σ2 2
R t′2, . . . By Lemma 8.16, we

have ‖f(x)σn‖t ≤ ‖f(x)‖t + n ·max{‖`‖t | `→ r ∈ R}, i.e., ‖f(x)σn‖t ∈ O(n).
However, as f(x) σn n

R t′n implies f(x)σn −→nR t′n, we obtain a contradiction as
rccp(R)(n) /∈ Ω(n) implies ‖f(x)σn‖t /∈ O(n).

Now we can show that a linear lower bound is equivalent to non-termination
of narrowing for a term of the form f(x1, . . . , xk).

Lemma 8.18 (Linear Lower Bound ⇐⇒ Non-Termination of Narrowing).
There is a non-terminating narrowing sequence that starts with a basic term
f(x1, . . . , xk) for pairwise different variables x1, . . . , xk if and only if we have
rccp(R)(n) ∈ Ω(n).

Proof. For the “only if” direction, we have an infinite sequence f(x1, . . . , xk) =
t0

σ1
R t1

σ2
R . . . for pairwise different variables xi, where σi is the mgu used

in the ith narrowing step. By Lemma 8.16, we have

‖t0σ1 . . . σi‖t ≤ ‖t0‖t + i ·max{‖`‖t | `→ r ∈ R}
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for each i ∈ N, i.e., ‖t0σ1 . . . σi‖t is linear in i. Thus, the infinite family of
rewrite sequences t0σ1 . . . σi −→iR ti is a witness for rccp(R)(n) ∈ Ω(n).
For the “if” direction, rccp(R)(n) ∈ Ω(n) implies that the TRS does not have
constant runtime complexity. Hence, for each m ∈ N there is a rewrite sequence
of length m starting with a basic term f(. . .). Since Σd(R) is finite, there exists
an f ∈ Σd(R) such that there are rewrite sequences of lengths m1 < m2 <

m3 < . . . that start with basic terms with root symbol f. By Lemma 8.14
this means that the term f(x1, . . . , xk) starts narrowing sequences of lengths
m1 < m2 < m3 < . . ., i.e., the narrowing tree with the root f(x1, . . . , xk) has
infinitely many nodes. Since R is finitely branching, by König’s Lemma the
tree has an infinite path, i.e., there is an infinite narrowing sequence starting
with f(x1, . . . , xk).

We now show that non-termination of narrowing and rewriting on possibly
infinite basic terms are equivalent. The motivation is that the immortality
problem for Turing machines allows configurations with infinitely many non-
blank symbols on the tape, which can naturally be represented as infinite terms.
To prove this equivalence, we need the following auxiliary lemma.

Lemma 8.19 (Unification with Infinite Terms). Let s, t be variable-disjoint
linear finite terms. If there is a substitution σ such that sσ = tσ and rng(σ)
contains infinite terms, then s and t unify and the range of mgu(s, t) consists
of linear finite terms.

Proof. We use structural induction on s. If s ∈ V, then mgu(s, t) = {s/t}
and if t ∈ V, then mgu(s, t) = {t/s}. Now let s = f(s1, . . . , sk) and since
sσ = tσ, we have t = f(t1, . . . , tk). By the induction hypothesis, the ranges
of the substitutions σ1 = mgu(s1, t1), . . . , σk = mgu(sk, tk) consist of linear
finite terms. Let V(σi) = dom(σi) ∪ V(rng(σi)) for all i ∈ {1, . . . , n}. Since s
and t are variable-disjoint and linear, the sets V(σi) are pairwise disjoint and
we have (V(si) ∪ V(ti)) ∩ V(σj) = ∅ for all i 6= j. Hence, we get mgu(s, t) =
σ1 � . . . � σn. As, by the induction hypothesis, rng(σi) consists of linear terms
and the sets V(σi) are pairwise disjoint, the range of mgu(s, t) consists of linear
terms, too. Similarly, as rng(σi) only contains finite terms, this also holds for
rng(σ1 � . . . � σn).

Lemma 8.20 (Narrowing and Rewriting with Infinite Terms). The narrow-
ing relation R terminates on basic terms of the form f(x1, . . . , xk) if and
only if −→R terminates on possibly infinite basic terms.

Proof. For the “if” direction, assume there is an infinite sequence f(x1, . . . , xk) =
t1

σ1
R t2

σ2
R . . . Then t1σ

ω
1 −→R t2σ

ω
2 −→R . . . is an infinite −→R-sequence
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where σωi = σiσi+1 . . . Since the terms in the rules of R are basic, all terms
tiσ

ω
i are basic, too.

For the “only if” direction, assume that there is an infinite rewrite sequence
t1 −→R t2 −→R . . . on possibly infinite basic terms ti. We now show that for
every finite prefix t1 −→R t2 −→R . . . −→R tm of this sequence, there is a rewrite
sequence t′1 −→R t′2 −→R . . . −→R t′m with finite and linear basic terms t′i. This
suffices for the current lemma, because it implies that the TRS does not have
constant runtime complexity. As in the proof of Lemma 8.18 one can then show
that there is an infinite narrowing sequence starting with a term f(x1, . . . , xk).
It remains to prove that for every finite rewrite sequence t1 −→R t2 −→R . . . −→R
tm with possibly infinite basic terms ti, there is a rewrite sequence t′1 −→R t′2 −→R
. . . −→R t′m with finite linear basic terms t′i, where there exists a substitution σ

such that t′iσ = ti for all i ∈ {1, . . . ,m}. We prove this claim by induction on
m.
The case m = 1 is trivial. In the induction step, we consider the rewrite
sequence t1 −→R t2 −→R . . . −→R tm −→R tm+1 of possibly infinite basic terms. By
the induction hypothesis we have t′1 −→R t′2 −→R . . . −→R t′m for finite linear basic
terms t′i where t′iσ = ti for all i. Let `→ r be the rule applied in the rewrite step
from tm to tm+1, i.e., tm = `δ and tm+1 = rδ. As t′mσ = tm = `δ and as w.l.o.g.,
` is variable-disjoint from t′1, . . . , t

′
m, this means that t′m and ` are unifiable

using a substitution whose domain contains infinite terms. By Lemma 8.19,
θ = mgu(t′m, `) exists and its range consists of linear finite terms, as t′m and `

are linear and finite. Let µ be a substitution such that θ�µ is like σ on t′1, . . . , t′m
and like δ on `. We define t′′i = t′iθ for all i ∈ {1, . . . ,m} and t′′m+1 = rθ. Then
we have t′′1 −→R . . . −→R t′′m = t′mθ = `θ −→R rθ = t′′m+1. Moreover, we have
t′′i µ = t′iθµ = t′iσ = ti for all i ∈ {1, . . . ,m} and t′′m+1µ = rθµ = rδ = tm+1.
It remains to show that all t′′i are linear. Let V ′ = V(t′1)∪ . . .∪V(t′m). Since ` is
variable-disjoint from t′1, . . . , t

′
m and θ = mgu(t′m, `), rng(θ|V′) does not contain

variables from V ′. Since each t′i is linear and rng(θ) consists of linear terms,
this implies that t′′1 , . . . , t′′m are linear, too. Similarly, t′′m+1 is linear, as θ|V(r)
does not contain variables from V(r), r is linear, and rng(θ) consists of linear
terms.

Lemma 8.18 and Lemma 8.20 imply that for ordinary, linear, and basic TRSs, a
linear lower bound is equivalent to non-termination of rewriting on possibly infi-
nite basic terms. We now reduce the immortality problem for Turing machines
to this latter problem in order to show that it is not semi-decidable.
Let M = (Q,Γ, δ) be a Turing machine. We say that M is mortal if and
only if there is no infinite sequence (q1, w1, a1, w

′
1) −→M (q2, w2, a2, w

′
2) −→M

. . . of configurations. The difference to the halting problem is that for the
mortality problem, one may start with a tape containing infinitely many non-
blank symbols. Moreover, one can begin with any state q1 ∈ Q. As shown in
[88], the immortality problem for Turing machines is not semi-decidable.
To reduce immortality of Turing machines to non-termination of rewriting
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with infinite terms, we use the following encoding. For any Turing machine
M = (Q,Γ, δ), we define the TRS RM. Here, f has arity 4, all symbols from Γ
become function symbols of arity 1, and Q ∪ {a | a ∈ Γ} are constants.

RM = {f(q1, a2(xs), a1, ys)→ f(q2, xs, a2, b(ys)) | a2 ∈ Γ, δ(q1, a1) = (q2, b, L)}
∪ {f(q1, xs, a1, a2(ys))→ f(q2, b(xs), a2, ys) | a2 ∈ Γ, δ(q1, a1) = (q2, b, R)}

RM is an ordinary, linear, and basic TRS. Lemma 8.21 shows that immortality
of M is equivalent to non-termination of RM on possibly infinite basic terms.

Lemma 8.21 (Mortality of Turing Machines and Rewriting). A Turing
machine M is immortal if and only if there is a possibly infinite basic term
that starts an infinite rewrite sequence with RM.

Proof. We define the following functions word and word−1 to convert possibly
infinite words over Γ to infinite constructor terms and vice versa.

word(a.w) = a(word(w))

word−1(t) =
{
a.word−1(t′) if t = a(t′) and a ∈ Γ
�ω otherwise

For each configuration (q, w, a, w′) let

term(q, w, a, w′) = f(q,word(w), a,word(w′)).

For the “only if” direction, it suffices to show that

(q1, w1, a1, w
′
1) −→M (q2, w2, a2, w

′
2)

implies
term(q1, w1, a1, w

′
1) −→RM term(q2, w2, a2, w

′
2).

We regard the case where δ(q1, a1) = (q2, b, L) (the case δ(q1, a1) = (q2, b, R)
works analogously). Then w1 = a2.w2 and w′2 = b.w′1. Thus,

term(q1, w1, a1, w
′
1) = f(q1, a2(word(w2)), a1,word(w′1))
−→RM f(q2,word(w2), a2, b(word(w′1)))
= term(q2, w2, a2, w

′
2),

as desired.
For the “if” direction, it suffices to show that if t1 is a possibly infinite basic
term with t1 −→RM t2, then conf 1 −→M conf 2 with

conf i = (ti|1,word−1(ti|2), character(ti|3),word−1(ti|4))

for both i ∈ {1, 2}, where character(a) = a. Clearly, we have ti|1 ∈ Q and
ti|3 ∈ {a | a ∈ Γ}. We regard the case where the rule of RM used for the
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rewrite step corresponds to a shift to the left (the right shift works analogously).
Then we have t1 = f(q1, a2(s), a1, s

′) and t2 = f(q2, s, a2, b(s′)) for a1, a2, b ∈ Γ,
some possibly infinite constructor terms s, s′, and q1, q2 ∈ Q. Moreover, by
construction we have δ(q1, a1) = (q2, b, L). Hence,

conf 1 = (q1, a2.word−1(s), a1,word−1(s′))
−→M (q2,word−1(s), a2, b.word−1(s′))
= conf 2.

Proof of Theorem 8.13. For any Turing machine M we have the following:

M is immortal
⇐⇒ −→RM does not terminate on possibly infinite basic terms (Lemma 8.21)
⇐⇒ RM does not terminate on basic terms f(x1, . . . , xk) (Lemma 8.20)
⇐⇒ rccp(RM)(n) ∈ Ω(n) (Lemma 8.18)

Thus, a semi-decision procedure for rccp(RM)(n) ∈ Ω(n) would result in a semi-
decision procedure for immortality of Turing machines. However, immortality of
Turing machines is known to be not semi-decidable [88]. Thus, rccp(R)(n) ∈ Ω(n)
cannot be semi-decidable for the class of ordinary, linear, and basic TRSs.
Note that the existence of decreasing loops is semi-decidable, since one can
recursively enumerate all possible rewrite sequences `→+

R C[r] and since it is
decidable whether an actual rewrite sequence is a decreasing loop. This implies
that loop detection by decreasing loops cannot be complete for ordinary, linear,
and basic TRSs.
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8.4 Innermost Decreasing Loops

So far, we used loop detection to prove lower bounds on the runtime complexity
of full rewriting. However, TRSs resulting from the translation of programs
often have to be evaluated with an innermost strategy (e.g., [63, 107]). Hence,
we now show how to adapt loop detection to innermost runtime complexity. To
do so, we introduce innermost decreasing loops, which are like decreasing loops,
but here only non-overlapping rewrite sequences are considered.

Definition 8.22 (Non-Overlapping Rewriting). For a TRS R, we say that
a term s reduces to t by non-overlapping rewriting (denoted s k−→n R t) if
there is a context C, a substitution σ, and a rule ` k−→ r ∈ R such that
s = C[`σ], t = C[rσ], and no proper non-variable subterm of `σ unifies with
any (variable-renamed) left-hand side of a rule in R.

Clearly, any non-overlapping rewrite step is an innermost step (i.e., s k−→n t

implies s k−→
i
t), but not vice versa. For innermost decreasing loops, instead of

reductions ` −→+
R C[r] we now consider reductions of the form ` −→n +

R C[r].
To find non-overlapping rewrite sequences, non-overlapping narrowing can be
used instead of narrowing. Like non-overlapping rewriting, non-overlapping
narrowing does not allow reduction steps where a proper non-variable subterm
of the redex unifies with a (variable-renamed) left-hand side of a rule.
The following theorem shows that each non-overlapping decreasing loop gives
rise to a linear lower bound on the innermost runtime complexity of a TRS,
provided that there are no infinite rewrite sequences with cost 0.

Theorem 8.23 (Lower Bounds for Innermost Rewriting by Loop Detection).
Let R be a TRS. If R0 = {` k−→ r ∈ R | k = 0} terminates and R has a
decreasing loop ` k−→n +

R C[r], then rccpi(R)(n) ∈ Ω(n).

Proof. If R is not innermost terminating on basic terms, then the claim is
trivial since R0 terminates and thus non-termination of R on basic terms
implies rccpi(R)(n) ∈ Ω(ω). Otherwise, let δ be a substitution such that for all
x ∈ V(`θn), we have xδ −→

i

∗
R xδ and xδ is in normal form.

Similar to the proof of Theorem 8.6, we have

`θnδ = `θn−1δ k−→
i

+
R C[r]θn−1δ D rθn−1δ

= `σθn−1δ = `θn−1(σ � θn−1)|dom(σ)δ = `θn−1δ′

for the substitution δ′ = (σ � θn−1)|dom(σ) � δ.
The rewrite sequence `θn−1δ k−→

i

+
R C[r]θn−1δ is indeed an innermost reduction.

To see this, recall that δ only instantiates variables by normal forms. Moreover,
θ has no defined symbols in its range, since ` is basic. For this reason, θn−1δ

also instantiates all variables by normal forms, i.e., no rewrite step is possible
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for the terms in the range of θn−1δ. Moreover, the subterms of the redexes
in the reduction ` −→n +

R C[r] do not unify with left-hand sides of rules. Hence,
these subterms remain in normal form if one instantiates them with θn−1δ.
This implies `θn−1δ −→

i

+
R C[r]θn−1δ.

Thus, for each n ∈ N, there is a rewrite sequence which has at least cost k · n
starting with `θn. This term is basic, since the range of θ only contains terms
of the form `|ξi . Each `|ξi is a constructor term, since ξi cannot be the root
position, due to r /∈ V. By construction, θ does not duplicate variables, as ` and
thus `|ξ1 , . . . , `|ξm only contain each xi once. Therefore, we have

∥∥`θn∥∥
t
∈ O(n).

Moreover, we have θ 6= id (otherwise R would not terminate on basic terms)
and thus

∥∥`θn∥∥
t

is strictly monotonically increasing in n Hence, we obtain
rccpi(R)(n) ∈ Ω(n) by Lemma 4.41.

The following example shows that we indeed have to require ` k−→n +
R C[r] instead

of just ` k−→
i

+
R C[r] in Theorem 8.23. The essential property of non-overlapping

rewriting is that if a substitution δ instantiates all variables with normal forms,
then s −→n R t still implies sδ −→

i R tδ. In contrast, s −→
i R t does not imply

sδ −→
i R tδ.

Example 8.24 (Non-Overlapping Rewriting). Consider the TRS

R =


f(y) 1−→ h(g(y)),

h(g(y)) 1−→ f(g(y)),
g(g(y)) 1−→ y

.
We clearly have f(y) 2−→

i

+
R f(g(y)), but f(y) 6−→n +

R f(g(y)). If we replaced
“` k−→n +

R C[r]” by “` k−→
i

+
R C[r]” in Theorem 8.23, then we would falsely deduce

a linear lower bound from the decreasing loop f(y) 2−→
i

+
R f(g(y)). However, all

innermost rewrite sequences that start with basic terms have at most length
4 for this TRS, i.e., rccpi(R)(n) ∈ Θ(1). The problem is that the rewrite
sequence f(y) 2−→

i

+
R f(g(y)) does not remain an innermost sequence anymore

if one instantiates y with the normal form g(y), i.e., we have f(g(y)) 6−→
i

+
R

f(g(g(y))).

It is also crucial to require termination of R0. The reason is that the innermost
evaluation of a basic term can lead to a non-terminating redex s whose infinite
reduction has cost 0. Then the evaluation “gets stuck” in the infinite reduction
of s without any costs. This problem is irrelevant for full rewriting, where we
can simply continue the reduction with a non-innermost redex in such cases.
The following example illustrates this problem.

Example 8.25 (Termination of R0). Let

R = {f(succ(x), y) 1−→ f(x, a), a 0−→ a}.
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If we wouldn’t require termination of R0 = {a 0−→ a} in Theorem 8.23, then
we would falsely deduce rccpi(R)(n) ∈ Ω(n) due to the decreasing loop

f(succ(x), y) 1−→n R f(x, a).

However, we have rccpi(R)(n) ∈ Θ(1), as we have

f(succ(x), y)σ 1−→
i R f(x, a)σ 0−→

i R f(x, a)σ 0−→
i R . . .

for every substitution σ such that f(succ(x), y)σ is basic.

Based on the notion of non-overlapping decreasing loops, it is straightforward
to adapt the concept of compatible decreasing loops in Definition 8.11 and
Theorem 8.12 to innermost rewriting.

152



8.5 Related Work

As mentioned in Chapter 6, loop detection is related to techniques that search
for loops in order to prove non-termination of TRSs [67, 108, 125, 132, 134]. To
find loops, sophisticated techniques have been proposed. For example, [67, 108]
rely on semi-unification in combination with pruning of rules [108] resp. em-
bedded into the Dependency Pair Framework [67]. The tool Matchbox [125,
134] is specialized to string rewriting and obtains impressive results regarding
the detection of non-termination for this variant of rewriting at the annual
Termination and Complexity Competition [121]. The technique proposed in
[132] relies on a SAT encoding to search for loops.
In contrast, we use a naive approach to search for decreasing loops: We perform
a fixed number of narrowing steps to obtain a representative set of rewrite
sequences and check the number of compatible decreasing loops for each of
them. While our experiments (cf. Chapter 12) indicate that such an approach
is sufficient in almost all cases, the performance of our technique could certainly
be improved by using more sophisticated heuristics. Moreover, better heuristics
might allow for more precise bounds in some cases (e.g., exponential or infinite
bounds for TRSs where our current approach infers a linear lower bound).
A technique to decide whether a given loop is also an innermost loop is presented
in [123], i.e., this technique can decide if a given loop witnesses non-termination
w.r.t. an innermost reduction strategy. In contrast, our adaption of loop detec-
tion to innermost rewriting (Section 8.4) is based on non-overlapping rewriting.
Thus, it is incomplete, as there are decreasing loops which witness a linear
lower bound for innermost rewriting, but cannot be detected by our technique
as they are overlapping. As an example, consider the TRS

h(x)→ f(g(x)) f(g(succ(x)))→ h(x) g(succ(zero))→ a

It admits the decreasing loop h(succ(x)) → f(g(succ(x))) → h(x), which is
overlapping as the subterm g(succ(x)) of the second redex unifies with the
left-hand side g(succ(zero)). Nevertheless, the family of rewrite sequences
h(succn(x)) −→∗ h(x) witnesses a linear lower bound on the innermost run-
time complexity of the TRS. Thus, it might be worthwhile to investigate an
adaption of the technique from [123] to decreasing loops.
The paper [22] uses a proof quite similar to the one from Section 8.3 to show
undecidability of the question whether a TRS has a finite forward closure
resp. the finite variant property. Like our proof, it relies on the undecidability
of the mortality problem for Turing machines. Moreover, finiteness of the
forward closure of a TRS is closely related to termination of narrowing w.r.t. a
finite set of start terms. Similarly, our proof exploits that (non-)termination of
narrowing w.r.t. a finite set of start terms is closely related to the existence of
a linear lower bound for the runtime complexity of a TRS.
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We introduced loop detection, a powerful technique for the inference of lin-
ear (Section 8.1) and exponential (Section 8.2) lower bounds on the runtime
complexity of term rewrite systems. It searches for decreasing loops, a gener-
alization of the well-known notion of loops from termination analysis of TRSs.
Consequently, loop detection can also infer infinite lower bounds.
Given a single rewrite sequence s −→∗R t, loop detection works purely syntac-
tically, i.e., it deduces lower bounds by examining the structure of the terms
s and t. Rewrite sequences that give rise to high (i.e., preferably infinite or
exponential, but at least linear) lower bounds can be searched via narrowing.
Regarding linear bounds, we are not aware of an ordinary left-linear constructor
system which has at least linear runtime complexity, but no decreasing loop.
Note that this fragment of term rewriting essentially corresponds to first-order
functional programs and hence it is particularly interesting in the context of
program verification. Thus, the question whether loop detection is a semi-
decision procedure for rccp(R)(n) ∈ Ω(n) arises. In Section 8.3, we give a
negative answer to this question by reducing immortality of Turing machines
to the question whether a TRS has a linear lower bound.
In future work, one should investigate if more sophisticated techniques to search
for decreasing loops, which might be inspired by techniques to detect looping
non-termination (cf. Section 8.5), can improve the performance and the precision
of our technique. Moreover, finding an ordinary left-linear constructor system
with at least linear complexity, but without a decreasing loop (which has to
exist due to the results from Section 8.3) would be enlightening. During the
last days of my work on this thesis, I discovered the paper [36], which describes
a small, immortal Turing Machine which is aperiodic, which essentially means
that there is no non-empty run from a configuration (with potentially infinitely
many non-blank symbols on the tape) to itself. The corresponding TRS

b(xs, 0, cons(y, ys)) → d(cons(1, xs), y, ys)
b(xs, 1, cons(y, ys)) → p(cons(1, xs), y, ys)
b(xs, 2, cons(y, ys)) → p(cons(2, xs), y, ys)
d(cons(x, xs), 0, ys) → b(xs, x, cons(1, ys))
d(cons(x, xs), 1, ys) → q(xs, x, cons(1, ys))
d(cons(x, xs), 2, ys) → q(xs, x, cons(2, ys))
q(cons(x, xs), 0, ys) → b(xs, x, cons(2, ys))
q(cons(x, xs), 1, ys) → b(xs, x, cons(0, ys))
q(xs, 2, cons(y, ys)) → p(cons(0, xs), y, ys)
p(xs, 0, cons(y, ys)) → d(cons(2, xs), y, ys)
p(xs, 1, cons(y, ys)) → d(cons(0, xs), y, ys)
p(cons(x, xs), 2, ys) → q(xs, x, cons(0, ys))

seems to be the desired left-linear constructor system. However, it remains to
be proven that it does not have a decreasing loop. Finally, ideas from [123]
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might help to further improve the applicability of loop detection for innermost
rewriting.
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9

Lower Bounds for Term Rewriting by Induction

In this chapter, we present our second approach to generate lower bounds for
rccp(R) (by the so-called induction technique). To illustrate the idea, consider
the following TRS Rqs for Quicksort.1 The auxiliary function low(x, xs) returns
those elements from the list xs that are smaller than x (and high works analo-
gously). To ease readability, we use infix notation for the function symbols �
and ++.

Example 9.1 (TRS Rqs for Quicksort). The following TRS Rqs implements
the algorithm Quicksort.

α0 : qs(nil)→ nil
α1 : qs(cons(x, xs))→ qs(low(x, xs)) ++ cons(x, qs(high(x, xs)))
α2 : low(x, nil)→ nil
α3 : low(x, cons(y, ys))→ ifLow(x � y, x, cons(y, ys))
α4 : ifLow(true, x, cons(y, ys))→ low(x, ys)
α5 : ifLow(false, x, cons(y, ys))→ cons(y, low(x, ys))
α6 : high(x, nil)→ nil
α7 : high(x, cons(y, ys))→ ifHigh(x � y, x, cons(y, ys))
α8 : ifHigh(true, x, cons(y, ys))→ cons(y, high(x, ys))
α9 : ifHigh(false, x, cons(y, ys))→ high(x, ys)
α10 : zero � x→ true
α11 : succ(x) � zero→ false
α12 : succ(x) � succ(y)→ x � y
α13 : nil ++ ys→ ys
α14 : cons(x, xs) ++ ys→ cons(x, xs ++ ys)

For any n ∈ N, let genList(n) be the term
n×︷ ︸︸ ︷

cons(zero, . . . , cons(zero, nil) . . . ), i.e.,
the list of length n where all elements have the value zero (we also use the no-

1This TRS corresponds to “Rubio 04/quick.xml” from the Termination Problems Data
Base [122] used in the annual Termination and Complexity Competition [121].
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tation “consn(zero, nil)”). To find lower bounds, we show how to automatically
generate rewrite lemmas that describe families of rewrite sequences. For exam-
ple, our induction technique infers the following rewrite lemma automatically.

qs(genList(n)) 3·n2+2·n+1−−−−−−−−→ genList(n) (9.1)

The rewrite lemma means that for any n ∈ N, there is a rewrite sequence of at
least cost 3 · n2 + 2 · n + 1 that reduces qs(consn(zero, nil)) to consn(zero, nil).
From this rewrite lemma, our technique concludes that the runtime of Rqs is
at least quadratic. So in contrast to the technique presented in Chapter 8, the
induction technique can also prove super-linear polynomial lower bounds.
Up to minor syntactic differences, Example 9.1 is essentially a functional pro-
gram, i.e., Example 9.1 can easily be transformed to a program written in a
functional programming language like Haskell or OCaml. In general, the induc-
tion technique can be used to infer lower bounds on the worst-case complexity
of (real-world) programs operating on tree-shaped data structures, as such pro-
grams can naturally be expressed as term rewrite systems. Consequently, it has
important applications in the context of software verification and cybersecurity,
as such an analysis can, e.g., be used to detect denial-of-service vulnerabilities.
See Section 1.2 for a detailed discussion of the relation between (term) rewriting
and real-world programs.
Section 9.1 introduces the concepts of rewrite lemmas and generator symbols
like genList and other preliminaries. Section 9.2 shows how our implementation
automatically speculates conjectures that may result in rewrite lemmas. In
Section 9.3, we explain how to verify speculated conjectures automatically by
induction. From these induction proofs, one can deduce information on the cost
of the rewrite sequences that are represented by a rewrite lemma, cf. Section 9.4.
Thus, the use of induction to infer lower runtime bounds is a novel application
for automated inductive theorem proving. Afterwards, Section 9.5 shows how
rewrite lemmas are used to infer bounds for the complexity of a whole TRS.
Clearly, speculating and proving rewrite lemmas like (9.1) is very challenging.
Thus, Section 9.6 introduces indefinite rewrite lemmas, i.e., rewrite lemmas
with unknown right-hand sides. So whenever the inference of a definite rewrite
lemma like (9.1) fails, we can try to prove an indefinite lemma instead. While
indefinite lemmas are of limited use for the inference of further rewrite lemmas,
the structure of their proofs still allows us to deduce lower bounds.
Up to this point, another drawback of the induction technique is that it can
only reason about homogeneous data structures like, e.g., lists of zeros in (9.1).
Thus, we introduce an argument filtering technique in Section 9.7 which allows
us to also prove lower bounds for algorithms operating on inhomogeneous data
structures in some cases.
After lifting the induction technique to innermost rewriting in Section 9.8, we
compare it with the loop detection technique from Chapter 8 (Section 9.9) and
other related work (Section 9.10) and conclude in Section 9.11.
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9.1 From Term Rewriting to Rewrite Lemmas

Our approach is based on rewrite lemmas containing generator symbols such as
genList for types like List. Thus, in the first step of our approach we compute
suitable types for the TRS R to be analyzed. Standard TRSs do not have any
type annotations or built-in types, but they are defined over untyped signatures
Σ. Definition 9.2 extends them with types (see, e.g., [57, 86, 133]), where for
simplicity, we restrict ourselves to monomorphic types.

Definition 9.2 (Typing). Let Σ be an (untyped) signature. A many-sorted
signature Σ′ is a typed variant of Σ if it contains the same function symbols
as Σ, with the same arities. Similarly, in a typed variant V ′ of the variables
V, every variable has a type τ . We always assume that for every type τ , V ′
contains infinitely many variables of type τ . Given Σ′ and V ′, t ∈ T (Σ,V) is
a well-typed term of type τ w.r.t. Σ′ and V ′ if

• t ∈ V ′ is a variable of type τ or

• t = f(t1, . . . , tm) with m ∈ N, where each ti is a well-typed term of
type τi and f ∈ Σ′ has the type τ1 × . . .× τm → τ .

A term rewrite rule ` −→ r is well typed if ` and r are well-typed terms of the
same type. A TRS is well typed if all of its rules are well typed.2 Futhermore,
a substitution σ is well typed if xσ is a well-typed term of type τ for each
x ∈ dom(σ) of type τ .

For any TRS R, a standard type inference algorithm (e.g., [100]) can compute
a typed variant Σ′ such that R is well typed. Here, we compute typed variants
where the set of terms is decomposed into as many types as possible (i.e., where
as few terms as possible are considered to be “well typed”).

Example 9.3. Rqs is well typed w.r.t. the many-sorted signature Σ with
the following function symbols and types:

nil : List qs : List→ List
cons : Nat× List→ List ++ : List× List→ List
zero : Nat � : Nat×Nat→ Bool
succ : Nat→ Nat low, high : Nat× List→ List

true, false : Bool ifLow, ifHigh : Bool×Nat× List→ List

A type τ depends on another type τ ′ (denoted τ wdep τ
′) if τ = τ ′ or if there is

a c ∈ Σc(R) of type τ1× . . .× τm → τ where τi wdep τ
′ for some i ∈ {1, . . . ,m}.

For example, we have List wdep Nat in Example 9.3. To ease the presentation,
we do not allow mutually recursive types (i.e., if τ wdep τ

′ and τ ′ wdep τ , then

2W.l.o.g., here one may rename the variables in every rule. Then it is not a problem if
the variable x is used with type τ1 in one rule and with type τ2 in another rule.
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τ ′ = τ).
To represent families of terms, we now introduce generator symbols genτ and
generator equations. For any n ∈ N, genτ (n) represents a term from T (Σc(R))
where a recursive constructor of type τ is nested n times. A constructor

c : τ1 × . . .× τm → τ

is called recursive if τi = τ for some i ∈ {1, . . . ,m}. For the type Nat above,
we have the following generator equations:

genNat(0) = zero (9.2)
genNat(n+ 1) = succ(genNat(n)) (9.3)

If a constructor has a non-recursive argument of type τ ′, then genτ instantiates
this argument by genτ ′(0). For the type List, we get:

genList(0) = nil (9.4)
genList(n+ 1) = cons(genNat(0), genList(n)) (9.5)

Thus, the set of Rqs’s generator equations is Gqs = {(9.2), (9.3), (9.4), (9.5)}. If
a constructor has several recursive arguments, then several generator equations
are possible. For a type Tree with the constructors leaf : Tree and node :
Tree× Tree→ Tree, we have

genTree(0) = leaf and
genTree(n+ 1) = node(genTree(n), leaf) or
genTree(n+ 1) = node(leaf, genTree(n)).

Similarly, if a type has several non-recursive or recursive constructors, then
different generator equations can be obtained by considering all combinations
of non-recursive and recursive constructors.
To ease readability, we only consider generator equations for simply structured
types τ . Such types have exactly two constructors c, d ∈ Σc(R), where c is
not recursive, d has exactly one argument of type τ , and each argument type
τ ′ 6= τ of c or d is simply structured, too. Our approach is easily extended
to more complex types by heuristically choosing one of the possible generator
equations.3

3 For types with several recursive or non-recursive constructors, our heuristic prefers
to use those constructors for the generator equations that occur in the left-hand sides of
(preferably recursive) rules of the TRS. For a constructor with several recursive argument
positions like node, we examine how often the TRS contains recursive calls in the respective
arguments of node. If there are more recursive calls in the first arguments of node than in
the second one, then we take the generator equation genTree(n+ 1) = node(genTree(n), leaf)
instead of genTree(n+ 1) = node(leaf, genTree(n)).

160



9.1. From Term Rewriting to Rewrite Lemmas

Definition 9.4 (Generator Symbols and Equations). Let ΣN = {+, ·} ∪ N
be a many-sorted signature with the types +, · : N × N → N and n : N for
each natural number n. For every type τ 6= N, let genτ be a fresh generator
symbol of type N→ τ . Given a TRS R, the set GR consists of the following
generator equations for every simply structured type τ with the constructors
c : τ1 × . . .× τm → τ and d : τ ′1 × . . .× τ ′o → τ , where τ ′j = τ .

genτ (0) = c(genτ1(0), . . . , genτm(0))
genτ (n+ 1) = d(genτ ′1(0), . . . , genτ ′

j−1
(0), genτ (n), genτ ′

j+1
(0), . . . , genτ ′o(0))

Given a set of generator equations G, ΣG denotes the many-sorted signature
containing all generator symbols from G.

Later on, we will use generator symbols and generator equations to infer rewrite
lemmas for a TRS R. Such rewrite lemmas are “meta rules” which represent
families of R-sequences. However, in contrast to TRS rules, rewrite lemmas
contain natural numbers and generator symbols and they may have non-constant
costs. In the following, let A be the infinite set containing all valid equations in
the theory of N with addition and multiplication and, for any set of equations
E , let s ≡E t be a shorthand for E |= s = t, i.e., s ≡E t means that the equation
s = t is true in all models of E .

Definition 9.5 (Rewrite Lemmas). We call a many-sorted signature Σ a
standard signature if it does not use the type N.
Let G be a set of generator equations and let Σ be a standard signature. We
call ` c−→ r a rewrite lemma over Σ w.r.t. G if ` ∈ T (Σ ∪ ΣN ∪ ΣG ,V) \ V and
r ∈ T (Σ∪ΣN ∪ΣG ,V(`)) are well-typed terms of the same type, root(`) ∈ Σ,
cθ ∈ N for each θ : V(`)→ N, and c is weakly monotonically increasing.
Let L be a set of rewrite lemmas and let s and t be well-typed terms. We
have s c′−→L t if there is a rule ` c−→ r ∈ L, a context C, and a well-typed
substitution σ such that C[`σ] = s, C[rσ] = t, and c′ ≡A cσ.
We define Σd(L) = {root(`) | ` c−→ r ∈ L} and Σc(L) = Σ \ Σd(L).

So in particular, every TRS R over a standard signature is a set of rewrite
lemmas w.r.t. GR. Note that −→L is not a weighted relation (cf. Definition 2.10),
since cσ might still contain variables. However, the restriction of −→L to ground
terms is a weighted relation.

Example 9.6. Rqs and Lqs = Rqs ∪ {(9.1)} are sets of rewrite lemmas
w.r.t. Gqs.

Throughout this section, we assume a set of generator equations G and L always
denotes a set of rewrite lemmas w.r.t. G. Note that the definition of −→L is
purely syntactic, i.e., a term like f(genτ (1)) cannot be rewritten with a rule
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f(genτ (1 + x)) −→ . . . as we have f(genτ (1 + x)){x/0} = f(genτ (1 + 0)), which
is not syntactically equal to f(genτ (1)). Similarly, a term like f(zero) cannot
be rewritten with f(genNat(0)) −→ . . ., as the definition of −→L does not take
generator equations into account. Thus, we apply rewrite lemmas modulo G∪A.

Definition 9.7 (Rewriting Modulo). Let L be a set of rewrite lemmas and
let E be a set of equations. We define s c−→L/E t if s ≡E ◦ c−→L ◦ ≡E t. For
innermost rewriting, we define s c−→

i L/E t if there is a context C, a rewrite
lemma ` c′−→ r ∈ L, and a substitution σ such that s ≡E C[`σ], C[rσ] ≡E t,
c′σ ≡A c, and all proper subterms of `σ are normal forms w.r.t. −→L/E .
Furthermore, we define s0

c−→mL/E sm if s0
c1−→L/E . . .

cm−−→L/E sm and c ≡A∑m
i=1 ci. If the number of steps m is irrelevant, then we write s0

c−→∗L/E sm
(resp. s0

c−→+
L/E sm if m > 0). Finally, we lift c−→

i L/E to c−→
i

m
L/E analogously.

So in contrast to the integer transition relation (Definition 4.6) and the natural
transition relation (Definition 5.2) which also rely on an underlying theory
(namely integer arithmetic resp. arithmetic on natural numbers), rewriting
modulo is more flexible as the underlying theory is defined by an arbitrary
set of equations and −→L/E also allows to rewrite non-ground terms. On the
other hand, the integer resp. natural transition relation allows constraints like
“x > y”, which are not supported by rewriting modulo. In other words, rewriting
modulo just allows tests for equality (modulo E) via the condition “s ≡E C[`σ]”
in Definition 9.7. Thus, the transition relations from Chapter 4 and Chapter 5
are orthogonal to rewriting modulo.
In the following, we use −⇀ (resp. −⇀

i
) as a shorthand for−→L/G∪A (resp. −→

i L/G∪A)
if L and G are clear from the context.

Example 9.8. Using Lqs from Example 9.6 we have

qs(consn(zero, nil)) 3·n2+2·n+1−−−−−−−−⇀ consn(zero, nil)

using the rewrite lemma (9.1) since qs(consn(zero, nil)) ≡Gqs∪A qs(genList(n))
and consn(zero, nil) ≡Gqs∪A genList(n).

To reason about rewrite lemmas, it is often useful to normalize terms w.r.t. gen-
erator equations. Given a set of generator equations G, each ground term indeed
has a unique normal form w.r.t. G oriented from left to right.

Lemma 9.1 (Properties of G). Let Σ be a standard signature, let Gf = {`→
r | ` = r ∈ G}, and let Gb = {r → ` | ` = r ∈ G}.

(1) The relations −→Gf/A and −→Gb/A are well founded.

(2) The relation −→Gf/A is confluent modulo A.
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(3) Every well-typed term t ∈ T (Σ ∪ ΣN ∪ ΣG) has a unique normal form
w.r.t. −→Gf/A, i.e., t↓Gf/A exists.

Proof. We prove (1) – (3) individually.

(1) Well-foundedness of →Gf/A follows from Definition 9.4, since the argu-
ment of genτ decreases with each application of an equation and since we
excluded mutually recursive types. Well-foundedness of →Gb/A follows
from Definition 9.4, as each rewrite step reduces the number of symbols
from Σc(R).

(2) The relation →Gf/A is confluent modulo A since there are no critical
pairs.

(3) If the type of t is N, then the claim is trivial. Assume that the type of
t is not N. The term t has a normal form t′ which is unique modulo A
due to (1) and (2). Since t is well typed and ground and Σ is standard,
for each π ∈ pos(t) with root(t|π) ∈ ΣG we have t|π ≡A genτ (n) for some
type τ and some n ∈ N. Since every term of the form genτ (n) is a redex
w.r.t. −→Gf/A, we get t′|π ∈ T (Σ) by definition of G. Since t is well typed,
its type is not N, and Σ is standard, t and thus t′ does not have further
subterms of type N. Hence, t′′ ≡A t′ implies t′′ = t′, i.e., t′ is unique.

So the first step of the technique presented in this chapter is to transform a
complexity problem over →R into a complexity problem over →LR/GR∪A. To
this end, we lift our definition of basic terms and “size” to terms that contain
generator symbols.

Definition 9.9 (Tbasic). We have f(t) ∈ Tbasic(L) if f(t) is a well-typed term
with f ∈ Σd(L) and t ⊆ T (Σc(L)). Moreover, we have f(t) ∈ Tbasic(L,G) if
f(t) is a well-typed term with f ∈ Σd(L) and t ⊆ T (Σc(L) ∪ ΣG ∪ N).

So in contrast to Tbasic(L), Tbasic(L,G) also allows generator symbols and nat-
ural numbers. Thus, for each n ∈ N we have qs(genList(n)) ∈ Tbasic(Lqs,Gqs),
but qs(genList(n)) /∈ Tbasic(Lqs). However, we have

qs(genList(n))↓Gfqs
= qs(consn(zero, nil)) ∈ Tbasic(Lqs,Gqs) ∩ Tbasic(Lqs).

This is not a coincidence, as every basic term with generator symbols corre-
sponds to a basic term without generator symbols.

Lemma 9.10. We have t↓Gf/A ∈ Tbasic(L) for all t ∈ Tbasic(L,G).

Proof. The term t↓Gf/A exists due to Lemma 9.1 (3). Moreover, t ∈ Tbasic(L,G)
clearly implies t↓Gf/A ∈ Tbasic(L,G). It remains to show that t↓Gf/A does not
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contain generator symbols or symbols from ΣN, which follows as in the proof
of Lemma 9.1 (3). Thus, we get t↓Gf/A ∈ Tbasic(L).

The size of a basic terms with generator symbols is defined to be the size of the
corresponding basic term without generator symbols.

Definition 9.11 (‖·‖G). We define ‖t‖G =
∥∥∥t↓Gf/A∥∥∥

t
for all t ∈ Tbasic(L,G).

Thus, we have, e.g.,

‖qs(genList(n))‖Gqs
=
∥∥∥qs(genList(n))↓Gfqs

∥∥∥
t

= ‖qs(consn(zero, nil))‖t = 2n+ 2.

Based on these notions of basic terms and size, we can define the canonical
complexity problem of a set of rewrite lemmas in a natural way.

Definition 9.12 (Canonical Complexity Problem). The canonical com-
plexity problem of L and G is cp(L,G) = (Tbasic(L,G),−⇀, ‖·‖G). Simi-
larly, the innermost canonical complexity problem of L and G is cpi(L,G) =
(Tbasic(L,G),−⇀

i
, ‖·‖G).

This gives rise to the first processor of the current chapter.

Theorem 9.13 (From Term Rewriting to Rewrite Lemmas). Let R be a
well-typed TRS over a standard signature Σ. Then the processor mapping
cp(R) to cp(R,GR) is sound for lower bounds.

Proof. Since Tbasic(L,G) just contains well-typed ground terms, we only have to
regard rewrite sequences on well-typed ground terms. Thus, consider a rewrite
step s k−⇀ t where s and t are well typed and ground. We prove s↓GfR/A

k−→R
t↓GfR/A. Then the claim follows by Lemma 9.10 and Definition 9.11.
Let σ and ` k−→ r be the substitution and rule which are used for the rewrite step,
i.e., we have C[`σ] ≡GR∪A s and C[rσ] ≡GR∪A t for some context C. Thus,
we get C[`σ]↓GfR/A = s↓GfR/A and C[rσ]↓GfR/A = t↓GfR/A by Lemma 9.1 (3).
Let σ′ = {x/xσ↓GfR/A | x ∈ dom(σ)}. Since ` and r do not contain generator
symbols, we get `σ↓GfR/A = `σ′ and rσ↓GfR/A = rσ′. Since Σ is standard and
the only argument of generator symbols has type N, generator symbols cannot
occur above symbols from Σ in well-typed terms. So in particular, root(`) ∈ Σ
and C[`σ] ≡GR∪A s implies that there are no generator symbols above � in C.
Thus we get

s↓GfR/A = C[`σ]↓GfR/A
= C↓GfR/A[`σ↓GfR/A] as there are no gen. symbols above � in C

= C↓GfR/A[`σ′] as `σ↓GfR/A = `σ′
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and

t↓GfR/A = C[rσ]↓GfR/A
= C↓GfR/A[rσ↓GfR/A] as there are no gen. symbols above � in C

= C↓GfR/A[rσ′] as rσ↓GfR/A = rσ′.

Hence, we have s↓GfR/A
k−→R t↓GfR/A, as desired.

Note that the processor from Theorem 9.13 is not sound for upper bounds, as
the definition of complexity for rewrite lemmas just considers rewrite sequences
starting with basic ground terms, whereas the complexity of TRSs is defined
in terms of arbitrary derivations starting with basic terms. Thus, the runtime
complexity of the TRS R = {f(x) 1−→ f(x)} is unbounded, whereas we have
rccp(R,GR)(n) ∈ O(1) due to the absence of basic ground terms.
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For a defined symbol f of type τ1 × . . .× τm → τ with simply structured types
τ1, . . . , τm, our goal is to speculate a conjecture.

Definition 9.14 (Conjecture). A rule

s = f(genτ1(s1), . . . , genτm(sm)) 	n−−→? t

is called a conjecture for L if s and t are well typed, n ∈ V(s), f ∈ Σd(L),
and t ∈ T (Σ ∪ ΣN ∪ ΣG ,V(s)).
The variable n is called the induction variable of the conjecture.

Here, “	n” indicates that we will try to prove the validity of the conjecture
(cf. Definition 9.15) by induction on n later on. While lemma speculation was
investigated in inductive theorem proving and verification since decades [23],
we want to find lemmas of a special form in order to extract suitable lower
bounds from their induction proofs.
When speculating conjectures, we take the dependencies between defined sym-
bols into account. If f w g and g 6w f, then we first generate a conjecture
s = g(. . .) 	n−−→? t for g. Afterwards, we prove its validity by induction on n

in Section 9.3. If this proof attempt succeeds, then we infer a cost function
c ∈ T (ΣN,V(s)) in Section 9.4. This cost function describes a lower bound for
the cost of the corresponding evaluations. Then the analyzed set of rewrite
lemmas can be extended by g(. . .) c−→ t and this new rewrite lemma can be used
when generating a conjecture for f afterwards.

Definition 9.15 (Validity of Conjectures). A conjecture s 	n−−→? t is valid
for L if sσ −⇀∗ tσ holds for all σ : V(s)→ N.

For instance, the conjecture qs(genList(n)) 	n−−→? genList(n) is valid for Rqs, as
nσ = m ∈ N implies

qs(genList(n))σ ≡Gqs∪A
qs(consm(zero, nil)) −→+

Rqs
consm(zero, nil)

≡Gqs∪A genList(n)σ,

i.e., qs(genList(n))σ −⇀∗ genList(n)σ.
Of course, our algorithm for the speculation of conjectures is just one possible
implementation for this task. The soundness of our approach (i.e., the correct-
ness of the theorems and lemmas in Sections 9.3 to 9.5) is independent of the
specific implementation that is used for the speculation of conjectures.
To speculate a conjecture for a defined symbol f, we first generate sample
conjectures that describe the effect of applying f to specific arguments. To
obtain them, we narrow f(genτ1(n1), . . . , genτk(nk)) where n1, . . . , nk ∈ V, using
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the available rewrite lemmas. Thereby, we take the generator equations and
arithmetic into account. This narrowing corresponds to a case analysis over
the possible derivations.

Definition 9.16 (Narrowing Modulo). Let L be a set of rewrite lemmas and
let E be a set of equations. We have s σ

L/E t if σ is a well-typed substitution
such that sσ −→L/E t.

So in contrast to rewriting modulo equations, narrowing modulo equations
essentially performs equational unification instead of equational matching when
applying rewrite lemmas: First we instantiate variables in s via σ, then we
match a left-hand side of a rewrite lemma to a subterm of some s′ ≡E sσ when
performing the rewrite step sσ −→L/E t. However, in contrast to the narrowing
relation for term rewriting (Definition 7.5), we do not require the unifier to be
an mgu. The reason is that the question whether an mgu exists depends on the
set of equations E and, for our use case, there is no need to restrict narrowing
modulo to mgus.
In the following, we use “s  t” as a shorthand for “s  L/G∪A t” if L and G
are clear from the context. For instance, we have qs(genList(n)) σ genList(0)
using the rewrite lemmas L = Rqs, the corresponding generator equations Gqs,
the substitution σ = {n/0}, and the rule α0 since we have

qs(genList(n))σ = qs(genList(0)) ≡G lhs(α0) −→α0
rhs(α0) ≡G genList(0).

Although checking sσ ≡G∪A s′σ is undecidable for general equations G, equa-
tional unification is decidable in quadratic time for the generator equations of
Definition 9.4 [98]. Moreover, arithmetic terms s and t can be unified by rear-
ranging the equality s = t to the form x = q where x ∈ V and q ∈ T (ΣN,V\{x}).
Thus, due to the restricted form of the generator equations in Definition 9.4,
the required narrowing works reasonably efficient in practice.

Example 9.17 (Narrowing). In Example 9.1 we have qs w low and qs w high.
Assume that we obtained L′qs by extending Rqs by the rewrite lemmas

β0 : low(genNat(0), genList(n)) 3·n+1−−−−→ genList(0) and
β1 : high(genNat(0), genList(n)) 3·n+1−−−−→ genList(n).

Then the narrowing tree in Figure 9.1 can be generated to find sample con-
jectures for qs. The arrows are labeled with the used rules and substitutions.
For the sake of clarity, some arrows correspond to several narrowing steps.
The goal is to get representative rewrite sequences, not to cover all reductions.
Hence, we stop constructing the tree after some steps and choose suitable
narrowings heuristically.4

167



Chapter 9. Induction Technique

After constructing a narrowing tree with root s = f(. . .), we collect sample
conjectures sσ 	d−−→! t. Here, t results from a leaf q of the tree which is in
 -normal form by normalizing q w.r.t. the generator equations G applied from
right to left (which terminates due to Lemma 9.1). Thus, terms from T (Σ,V)
are rewritten to generator symbols with polynomials as arguments. Moreover,
σ is the substitution on the path from the root to q, and d is the number
of applications of recursive f-rules on the path (the recursion depth). A rule
f(. . .)→ r is recursive if r contains a symbol g with g w f.

Example 9.18 (Sample Conjectures). In Example 9.17, the set S of sample
conjectures contains5

qs(genList(n1)){n1/0}
	0−−→! genList(0),

qs(genList(n1)){n1/1}
	1−−→! genList(1), and

qs(genList(n1)){n1/2}
	2−−→! genList(2).

(9.6)

The sequence from qs(genList(n1)) to nil does not use recursive qs-rules.
Hence, its recursion depth is 0 and the  -normal form nil rewrites to
genList(0) when applying the generator equation (9.2) from right to left. The
sequence from qs(genList(n1)) to cons(zero, nil) (resp. cons2(zero, nil)) uses the
recursive qs-rule α1 once (resp. twice), i.e., it has recursion depth 1 (resp. 2).
Moreover, its  -normal form rewrites to genList(1) (resp. genList(2)) when
applying Gqs from right to left.

Now the goal is to find a maximal subset of these sample conjectures whose
elements are suitable for generalization. Then, this subset is used to speculate
a general conjecture (whose validity must be proved afterwards).
For a narrowing tree with root s, let Smax be a maximal subset of all sample
conjectures such that all sσ 	d−−→! t, sσ′

	d′−−→! t′ ∈ Smax are identical up to
the occurring natural numbers and variable names. For instance, the sample
conjectures (9.6) are identical up to the occurring numbers. To obtain a general
conjecture, we replace all numbers in the left-hand and right-hand sides of
sample conjectures by polynomials. In our example, we want to speculate a
conjecture of the form qs(genList(polleft)) 	n−−→? genList(polright). Here, polleft

and polright are polynomials in n, where n stands for the recursion depth. This
facilitates the proof of the resulting conjecture by induction on n.
For any term q, let posN(q) = {π ∈ pos(q) | q|π ∈ N}. Then for every posi-
tion π ∈ posN(sσ) (resp. π ∈ posN(t)) with sσ

	d−−→! t ∈ Smax, we search for
a polynomial polleft

π (resp. polright
π ). To obtain these polynomials, for every

4In our implementation, we construct the narrowing tree breadth-first. Here, we prefer
narrowing with rules with non-constant costs (i.e., narrowing with the rules from the initial
TRS is only done for those subterms where no “meta rule” is applicable).

5We always simplify arithmetic expressions in terms and substitutions, e.g., the substitu-
tion {n1/0 + 1} in the second sample conjecture is simplified to {n1/1}.
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qs(genList(n1))

nil

α0
{n1/0}

cons(zero, qs(genList(n′1)))

cons(zero, nil)

α0
{n′1/0}

cons(zero, cons(zero, qs(genList(n′′1 ))))

cons(zero, cons(zero, nil))

α0
{n′′1/0}

. . .

α1, β0, β1, α0, α2
{n′1/n

′′
1 + 1}

α1, β0, β1, α0, α2
{n1/n′1 + 1}

Figure 9.1: Narrowing Tree

sσ
	d−−→! t ∈ Smax we generate the constraints

polleft
π (d) = sσ|π for all π ∈ posN(sσ) and

polright
π (d) = t|π for all π ∈ posN(t). (9.7)

Here, polleft
π and polright

π are polynomials with abstract coefficients. If one
searches for polynomials of degree e, then the polynomials have the form
c0 + c1 · n + . . . + ce · ne and the constraints in (9.7) are linear diophantine
equations over the unknown coefficients ci ∈ N.6 These equations are easily
solved automatically. Finally, the generalized speculated conjecture is obtained
from sσ

	d−−→! t by replacing sσ|π with polleft
π for every π ∈ posN(sσ) and by

replacing t|π with polright
π for every π ∈ posN(t).

Example 9.19 (Speculating Conjectures). In Example 9.17, we narrowed
s = qs(genList(n1)) and obtained the set Smax with the sample conjectures
(9.6), cf. Example 9.18. For each sσ 	d−−→! t ∈ Smax, we have posN(sσ) = {1.1}
and posN(t) = {1}. Hence, from the sample conjecture

qs(genList(0)) 	0−−→! genList(0),

we obtain the constraints

polleft
1.1 (d) = polleft

1.1 (0) = qs(genList(0))|1.1 = 0 and
polright

1 (d) = polright
1 (0) = genList(0)|1 = 0.

Similarly, from the two other sample conjectures we get

polleft
1.1 (1) = polright

1 (1) = 1 and polleft
1.1 (2) = polright

1 (2) = 2.

6 In the constraints (9.7), n is instantiated by an actual number d. Thus, if polleft
π =

c0 + c1 · n+ . . .+ ce · ne, then polleft
π (d) is a linear polynomial over the unknowns c0, . . . , ce.
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When using polleft
1.1 = c0+c1 ·n+c2 ·n2 and polright

1 = d0+d1 ·n+d2 ·n2 with the
abstract coefficients c0, . . . , c2, d0, . . . , d2, the solution c0 = c2 = d0 = d2 = 0,
c1 = d1 = 1 (i.e., polleft

1.1 = n and polright
1 = n) is easily found automatically.

The resulting speculated conjecture is

qs(genList(polleft
1.1 )) 	n−−→? genList(polright

1 ), i.e.,
qs(genList(n)) 	n−−→? genList(n).

If Smax contains sample conjectures with e different recursion depths, then
there are unique polynomials of at most degree e− 1 satisfying the constraints
(9.7). The reason is that the sample conjectures give rise to e constraints for
the unknown coefficients of the polynomial, and a polynomial of degree e− 1
has e coefficients.

Example 9.20 (Several Variables in Conjecture). We consider the TRS
from Example 8.3 to show how to speculate conjectures with several variables.
Narrowing s = add(genNat(n1), genNat(n2)) yields the sample conjectures

add(genNat(n1), genNat(n2)){n1/0}
	0−−→! genNat(n2),

add(genNat(n1), genNat(n2)){n1/1}
	1−−→! genNat(n2 + 1),

add(genNat(n1), genNat(n2)){n1/2}
	2−−→! genNat(n2 + 2), and

add(genNat(n1), genNat(n2)){n1/3}
	3−−→! genNat(n2 + 3).

For the last three sample conjectures sσ 	d−−→! t, the only number in sσ

is at position 1.1 and the polynomial polleft
1.1 = n satisfies the constraint

polleft
1.1 (d) = sσ|1.1. Moreover, the only number in t is at position 1.2 and the

polynomial polright
1.2 = n satisfies polright

1.2 (d) = t|1.2. Thus, we speculate the
conjecture add(genNat(n), genNat(n2)) 	n−−→? genNat(n2 + n).

Example 9.21 (Larger Coefficients of Polynomials). The following rules
illustrates how we speculate conjectures where the coefficients of the polyno-
mials are larger than 1.

half(zero)→ zero half(succ(succ(x)))→ succ(half(x))

By narrowing s = half(genNat(n1)), we obtain the sample conjectures

half(genNat(n1)){n1/0}
	0−−→! genNat(0),

half(genNat(n1)){n1/2}
	1−−→! genNat(1), and

half(genNat(n1)){n1/4}
	2−−→! genNat(2).

For these sample conjectures sσ 	d−−→! t, the only numbers in sσ (resp. t) are
at position 1.1 (resp. at position 1). The polynomial polleft

1.1 = 2 · n satisfies
the constraint polleft

1.1 (d) = sσ|1.1 and the polynomial polright
1 = n satisfies

polright
1 (d) = t|1. Hence, we obtain half(genNat(2 · n)) 	n−−→? genNat(n).
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9.2. Speculating Conjectures

Algorithm 4 summarizes our method to speculate conjectures for a set of rewrite
lemmas L. Note that we have posN(sσ) = posN(sσ′) (resp. posN(t) = posN(t′))
and sσ and sσ′ (resp. t and t′) are identical up to variable names and the
positions posN(sσ) (resp. posN(t)) for each sσ 	d−−→! t, sσ′

	d′−−→! t′ ∈ Smax as the
sample conjectures in Smax are suitable for generalization. Hence, the choice in
Step 4 does not affect the result of our algorithm. In Step 8, we use the SMT
solver Z3 in our experiments (cf. Chapter 12). The latest version of AProVE uses
SMTInterpol [37] instead. As both AProVE and SMTInterpol are implemented
in Java, invoking SMTInterpol from AProVE causes less overhead than invoking
Z3.

Algorithm 4 Speculating Conjectures

1. Let f ∈ Σd(L) be a minimal symbol (w.r.t. w) which has not been analyzed

2. Compute a narrowing tree for s = f(genτ1(n1), . . . , genτk(nk))

3. Obtain a maximal set of sample conjectures Smax which is suitable for
generalization from this narrowing tree and let e = |Smax|

4. Choose some sσ 	d−−→! t ∈ Smax

5. For each π ∈ posN(sσ) resp. π ∈ posN(t)
Set polleft

π := cπ0 + cπ1 · n+ cπ2 · n2 + . . .+ cπe−1 · ne−1

resp. polright
π := dπ0 + dπ1 · n+ dπ2 · n2 + . . .+ dπe−1 · ne−1

6. Set ϕ := true

7. For each sσ′
	d′−−→! t′ ∈ Smax and each π ∈ posN(sσ′) resp. π ∈ posN(t′)

Set ϕ := ϕ ∧ polleft
π (d′) = sσ′|π

resp. ϕ := ϕ ∧ polright
π (d′) = t′|π

8. Search for a model σ of ϕ using standard SMT solvers

9. Let ` result from sσ by replacing sσ|π with polleft
π σ for each π ∈ posN(sσ)

10. Let r result from t by replacing t|π with polright
π σ for each π ∈ posN(t)

11. Return `
	n−−→? r
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Now we show how to prove the validity of speculated conjectures, cf. Defi-
nition 9.15. To prove validity of a conjecture s 	n−−→? t by induction, we use
rewriting with −⇀. In the induction step, we try to reduce s{n/n + 1} to
t{n/n + 1}, where one may use the rule αih = s −→ t as induction hypothesis.
Here, the induction variable n must not be instantiated and the remaining
variables in αih may only be instantiated by an increasing substitution. A
substitution σ is increasing if A |= xσ ≥ x holds for all x ∈ dom(σ). For
example, the substitution σ = {x/x+ y} is increasing because A |= x+ y ≥ x.
The restriction to increasing substitutions results in induction proofs that are
particularly suitable for inferring runtimes of valid conjectures. More precisely,
increasing substitutions are necessary to ensure the soundness of the recurrence
equations that we will construct for lower bounds in Section 9.4.
Thus, for any rule `→ r containing only variables of type N and any n ∈ V, let
s 7→`→r,n t if there exist an increasing substitution σ with nσ = n and a context
C such that s ≡G∪A C[`σ] and C[rσ] ≡G∪A t. Moreover, we define q c−⇀`→r,n p

if q c−⇀ p or c = 0 and q 7→`→r,n p (and we lift c−⇀`→r,n to c−⇀∗`→r,n analogously to
c−⇀, cf. Definition 9.7). Theorem 9.22 shows which rewrite sequences are needed
to prove a conjecture s 	n−−→? t by induction on n.

Theorem 9.22 (Proving Conjectures). Let s 	n−−→? t be a conjecture for
L. If s{n/0} ib−⇀∗ t{n/0} and s{n/n + 1} is−⇀+

s→t,n t{n/n + 1} for some
ib, is ∈ T (ΣN,V(s)), then the conjecture s 	n−−→? t is valid for L.

Proof. We prove Theorem 9.22 together with Theorem 9.26 in Section 9.4.

Example 9.23 (Proof of Conjecture for qs). We continue Example 9.19. To
prove the conjecture qs(genList(n)) 	n−−→? genList(n), in the induction base we
show qs(genList(0)) −⇀ genList(0) and in the induction step, we obtain

qs(genList(n+ 1))
−⇀∗ nil ++ cons(zero, qs(genList(n)))

7→qs(genList(n))−→genList(n),n nil ++ cons(zero, genList(n))
−⇀ genList(n+ 1).

The following example illustrates why one may have to instantiate non-induction
variables in the induction hypothesis when proving conjectures.

Example 9.24 (Instantiating Non-Induction Variables). Consider the TRS
from Example 8.3. Recall that we speculated the conjecture

add(genNat(n), genNat(n2)) 	n−−→? genNat(n2 + n)
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in Example 9.20. To prove this conjecture, in the induction base we have

add(genNat(0), genNat(n2)) 1−⇀ genNat(n2).

In the induction step, we obtain

add(genNat(n+ 1), genNat(n2)) 1−⇀ add(genNat(n), genNat(n2 + 1)).

To apply the induction hypothesis

αih : add(genNat(n), genNat(n2))→ genNat(n2 + n),

we therefore have to instantiate the non-induction variable n2 by n2 + 1.
Clearly, this is an increasing substitution since A |= n2 + 1 ≥ n2. Thus, the
proof of the induction step continues with

add(genNat(n), genNat(n2 + 1)) 7→αih,n genNat((n2 + 1) + n)
≡A genNat(n2 + (n+ 1)).
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9.4 Inferring Bounds for Valid Conjectures

For a valid conjecture s 	n−−→? t, we now show how to infer a lower bound on
the cost of the corresponding rewrite sequences, i.e., how to generate a cost
function c ∈ T (ΣN,V(s)) such that we obtain a rewrite lemma s c−→ t. More
precisely, we show that one can infer a suitable bound from the induction proof
of a conjecture s 	n−−→? t. Assume that we proved validity of s 	n−−→? t as in
Theorem 9.22 where the induction hypothesis s → t was applied ih times.
Then we get the following recurrence equations for c:

c{n/0} = ib and c{n/n+ 1} = ih · c + is (9.8)

Here, the cost of the rewrite sequences which are covered by the induction
hypothesis s→ t are taken into account by the addend ih · c. When applying
s→ t, s and t are instantiated by an increasing substitution σ. By the induction
hypothesis, each rewrite sequence sσ −⇀∗ tσ has at least cost cσ. Since σ is
increasing, we have xσ ≥ x for all x ∈ V(s). As c ∈ T (ΣN,V(s)) is weakly
monotonically increasing, this implies cσ ≥ c. Thus, c is a lower bound for the
costs of the reduction sσ −⇀∗ tσ. Hence, the restriction to weakly monotonic
functions c and increasing substitutions σ allows us to underapproximate cσ by
c in (9.8), resulting in recurrence equations that are suitable for automation.
By solving the recurrence equations (9.8), we can now compute c explicitly.

Lemma 9.25 (Solving (9.8) Explicitly). Let c be defined as follows:

c = ihn · ib +
n−1∑
i=0

ihn−1−i · is{n/i}.

Then c satisfies (9.8).

Proof. We use induction on n. We obtain c{n/0} = ih0 · ib = ib, as required
in (9.8). Similarly,

c{n/n+ 1} = ihn+1 · ib +
∑n
i=0 ih

n−i · is{n/i}
= ihn+1 · ib +

(∑n−1
i=0 ihn−i · is{n/i}

)
+ is

= ihn+1 · ib + ih ·
(∑n−1

i=0 ihn−1−i · is{n/i}
)

+ is

= ih · (ihn · ib +
∑n−1
i=0 ihn−1−i · is{n/i}) + is

= ih · c + is,

as in (9.8).

Using the explicit form of c from Lemma 9.25, we can obtain a rewrite lemma
from a valid conjecture.
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Theorem 9.26 (Explicit Runtime of Valid Conjectures). Let s 	n−−→? t be a
conjecture with an induction proof as in Theorem 9.22. Then the processor
mapping cp(L,G) to cp(L ∪ {s c−→ t},G) is sound for lower bounds.

To prove Theorem 9.26, we need the following auxiliary lemma, which shows
that −⇀ is closed under instantiation of variables with natural numbers.

Lemma 9.27 (Stability of ⇀ and ⇀`→r,n). Let `, r, s, and t be well-typed
terms where s only contains variables of type N, and let µ : V(s)→ N. Then
we have:

(a) s c−⇀ t implies sµ cµ−⇀ tµ

(b) s c−⇀`→r,n t implies that there is a substitution σ : V(`) → N with
nσ = nµ and mσ ≥ mµ for all m ∈ V(`) such that sµ cµ−⇀`σ→rσ,n tµ.

Proof. Since rewriting is closed under substitutions, we immediately have (a).
For (b), let s c−⇀`→r,n t. If we also have s c−⇀ t, then the claim follows from
(a). Otherwise, we have s 7→`→r,n t and c = 0. Hence, there is a term
s′, an increasing substitution σ′ with nσ′ = n, and a context C such that
s ≡G∪A C[`σ′] and C[rσ′] ≡G∪A t. Let σ = σ′µ. Then sµ 7→`σ→rσ,n tµ, since
sµ ≡G∪A C[`σ′]µ = Cµ[`σ] and Cµ[rσ] = C[rσ′]µ ≡G∪A tµ. Moreover, nσ =
nσ′µ = nµ and as σ′ is increasing, mσ′ ≥ m implies mσ = mσ′µ ≥ mµ.

Now we can prove Theorems 9.22 and 9.26 together.

Proof of Theorems 9.22 and 9.26. To prove the theorems, it suffices to prove

sµ k−⇀∗ tµ with k ≥ cµ for any µ : V(s)→ N. (9.9)

We use induction on nµ. For the induction base, assume nµ = 0. By the pre-
requisites of the theorem, we have s{n/0} ib−⇀∗ t{n/0} (cf. Theorem 9.22). By
Lemma 9.27 (a), −⇀ is stable and thus we get sµ = s{n/0}µ (ib)µ−−−⇀∗ t{n/0}µ =
tµ. Finally, we have cµ = c{n/0}µ = (ib)µ.
In the induction step, we have nµ > 0. Let µ′ : V(s)→ N where µ′ is like µ for
all V(s) \ {n} and nµ′ = nµ− 1. We have

s{n/n+ 1} = v1
c1θ1−−⇀s→t,n . . .

coθo−−⇀s→t,n vo+1 = t{n/n+ 1}

with o > 0 and is =
∑o
i=1 ciθi by the prerequisites of the theorem. By

Lemma 9.27 (b), we obtain

s{n/n+ 1}µ′
= v1µ

′ c1θ1µ′−−−−⇀sσ1→tσ1,n . . .
coθoµ′−−−−⇀sσo→tσo,n vo+1µ

′ =
t{n/n+ 1}µ′

(9.10)
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for substitutions σj such that sσj and tσj are ground, nσj = nµ′, and mσj ≥
mµ′ for all m ∈ V(s).
For each step vjµ

′ 7→sσj→tσj ,n vj+1µ
′, we get sσj k′−⇀∗ tσj and thus also

vjµ
′ k′−⇀∗ vj+1µ

′ with k′ ≥ cσj by the induction hypothesis since nσj = nµ′ =
nµ − 1. As c is weakly monotonic and mσj ≥ mµ′ for each m ∈ V(c) ⊆ V(s),
this implies k′ ≥ cµ′. Since there are ih many of these steps and each of them
has cost 0 in (9.10), we get s{n/n+ 1}µ′ k−⇀+ t{n/n+ 1}µ′ with

k ≥ ih · cµ′ + (is)µ′ (9.8)= c{n/n+ 1}µ′.

This proves the desired claim, since sµ ≡A s{n/n+ 1}µ′, tµ ≡A t{n/n+ 1}µ′,
and cµ ≡A c{n/n+ 1}µ′.

The following example shows how Theorem 9.26 can be used to obtain a rewrite
lemma for qs from the valid conjecture qs(genList(n)) 	n−−→? genList(n) from
Example 9.23.

Example 9.28 (Computing c for qs). Reconsider the induction proof of the
conjecture qs(genList(n)) 	n−−→? genList(n) in Example 9.23. The proof of the
induction base is qs(genList(0)) ≡Gqs qs(nil) 1−→L′qs

nil ≡Gqs genList(0). Hence,
ib = 1. The proof of the induction step is as follows.

qs(genList(n+ 1)) ≡Gqs

qs(cons(zero, genList(n))) 1−→L′qs

qs(low(zero, genList(n))) ++ cons(zero, qs(high(zero, genList(n)))) 3·n+1−−−−⇀
qs(nil) ++ cons(zero, qs(high(zero, genList(n)))) 3·n+1−−−−⇀

qs(nil) ++ cons(zero, qs(genList(n))) 1−→L′qs

nil ++ cons(zero, qs(genList(n))) 7→αih,n

nil ++ cons(zero, genList(n)) 1−→L′qs

cons(zero, genList(n)) ≡Gqs

genList(n+ 1)

Thus, we have is = 6 · n+ 5 and ih = 1. Now Theorem 9.26 implies

c = ib +
n−1∑
i=0

is{n/i} = 1 +
n−1∑
i=0

(6 · i+ 5) = 3 · n2 + 2 · n+ 1.

Hence, we get the rewrite lemma

qs(genList(n)) 3·n2+2·n+1−−−−−−−−→ genList(n). (9.11)

In general, the recurrence equations (9.8) do not describe the exact cost of the
corresponding rewrite sequence. The reason is that when proving a conjecture
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s
	n−−→? t by induction, one may instantiate non-induction variables in the in-

duction hypothesis, but this instantiation is ignored in the recurrence equations
(9.8). Hence, in general c in Theorem 9.26 is only a lower bound for the runtime.
However, even if the non-induction variables in the induction hypothesis are
instantiated in the proof of a conjecture, c may still be exact.

Example 9.29 (Exact Bounds). The proof of

add(genNat(n), genNat(n2)) 	n−−→? genNat(n2 + n)

in Example 9.24 used one rewrite step for the induction base and one for
the induction step (i.e., ib = 1 and is = 1). The induction hypothesis was
applied once (i.e., ih = 1), where n2 was instantiated with n2 + 1. Thus,
Theorem 9.26 results in the exact cost function

c = ib +
n−1∑
i=0

is{n/i} = 1 + n.

This yields the lemma

add(genNat(n), genNat(n2)) 1+n−−−→ genNat(n2 + n),

which results in a linear lower bound for the runtime complexity of the whole
TRS.

In this example, the bound 1 + n for the runtime of the rewrite lemma is exact,
because ib and is do not depend on n2. But the following modification of the
add-TRS illustrates why our approach might fail to compute exact bounds.

Example 9.30 (Non-Exact Bounds). In the following TRS, addDouble(x, y)
corresponds to a subsequent application of add and double, i.e., it first com-
putes the addition of x and y, and then it doubles the result.

addDouble(zero, y) → double(y)
addDouble(succ(x), y) → addDouble(x, succ(y))

double(zero) → zero
double(succ(x)) → succ(succ(double(x)))

For double, we infer the rewrite lemma

double(genNat(n)) 1+n−−−→ genNat(2 · n).

For addDouble, the technique of Section 9.2 speculates the conjecture

addDouble(genNat(n), genNat(n2)) 	n−−→? genNat(2 · n2 + 2 · n),
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which is proved by induction. In the induction base, we have

addDouble(genNat(0), genNat(n2)) 1−⇀ double(genNat(n2))
1+n2−−−⇀ genNat(2 · n2)

which yields ib = 2 + n2. In the induction step, we get is = 1 and ih = 1.
Now Theorem 9.26 yields c = ib +

∑n−1
i=0 is{n/i} = 2 + n2 + n, resulting in

the rewrite lemma

addDouble(genNat(n), genNat(n2)) 2+n2+n−−−−−→ genNat(2 · n2 + 2 · n).

However, 2 + n2 + n is only a lower bound on the cost of this rewrite se-
quence: The non-induction variable n2 in addDouble’s second argument
increases in each application of addDouble’s recursive rule. Therefore fi-
nally, double(genNat(n2 + n)) has to be evaluated. Therefore, rewriting
addDouble(genNat(n), genNat(n2)) has cost 2 + n2 + 2 · n. However, the in-
crease of n2 is ignored in the recurrence equations (9.8) and in Theorem 9.26.

Unfortunately, the costs of the rewrite lemmas generated by Theorem 9.22 con-
tain the operator

∑
and hence they do not provide an intuitive understanding

of the complexity of the corresponding rewrite sequences. Moreover, they do
not immediately give rise to asymptotic bounds. To overcome this problem,
one could use recurrence solving to transform

∑
-expressions into algebraic ex-

pressions, i.e., expressions which only contain the operations (binary) addition,
subtraction, multiplication, division, and exponentiation. However, if one is
mainly interested in asymptotic instead of explicit bounds, then one can find
suitable algebraic expressions without solving recurrence equations. The reason
is that, for asymptotic bounds, constant factors in the costs of rewrite lemmas
can be neglected.
Let s 	n−−→? t be a valid conjecture as in Theorem 9.22. If the induction hy-
pothesis was used once in the proof (i.e., ih = 1), then Lemma 9.25 implies
c = ib +

∑n−1
i=0 is{n/i}. We now show that

if is is a polynomial, then we have
c ≥ k · (ib + n · is{n/n− 1}) for some constant 0 < k ≤ 1 (9.12)

and hence approximating c with ib + n · is{n/n− 1} is asymptotically sound.
Therefore, note that ib and is are non-negative when instantiated with natural
numbers. The reason is that ib and is are sums of costs of rewrite lemmas,
which are non-negative by Definition 9.5. For n = 0, we have

c{n/0} =
(
ib +

∑n−1
i=0 is{n/i}

)
{n/0}

= ib{n/0}
≥ k · ib{n/0} as ib is non-negative
= k · (ib + n · is{n/n− 1}){n/0}

178



9.4. Inferring Bounds for Valid Conjectures

for all 0 < k ≤ 1. For n = 1, we have

c{n/1} =
(
ib +

∑n−1
i=0 is{n/i}

)
{n/1}

= ib{n/1}+ is{n/0}
≥ k · (ib{n/1}+ is{n/0}) as ib and is are non-negative
= k · (ib + n · is{n/n− 1}){n/1}

for all 0 < k ≤ 1. For the case n > 1, let dis be the degree of is w.r.t. n. Then
we have

is =
dis∑
m=0

tm · nm (9.13)

where each tm is a polynomial that does not contain n. Hence,

c = ib+
n−1∑
i=0

dis∑
m=0

tm ·im = ib+
dis∑
m=0

n−1∑
i=0

tm ·im = ib+
dis∑
m=0

(
tm ·

n−1∑
i=0

im

)
(9.14)

By Faulhaber’s formula [93],

sm =
n−1∑
i=0

im is a polynomial over n with degree m+ 1 (9.15)

for any m ∈ N. For example,
∑n−1
i=0 i

1 = 1
2 · n

2 − 1
2 · n is a polynomial with

degree 2. Thus, (9.14) implies

c = ib +
dis∑
m=0

tm · sm. (9.16)

Note that

sm{n/0} = sm{n/1} = 0, (9.17)
sm is strictly monotonically increasing for n ≥ 1, and (9.18)

sm ≥ 1 for all n > 1 (9.19)

hold for all m ∈ N.
To finish the poof of (9.12), we first prove that

for each sm, n > 1 implies sm ≥ km · nm+1 for some 0 < km ≤ 1. (9.20)

Let sm =
∑m+1
i=0 ci · ni. Then (9.17) implies c0 = 0. Thus, (9.20) holds if and

only if we have
m∑
i=1

ci · ni ≥ (km − cm+1) · nm+1 (9.21)

for all n > 1. As, according to (9.15), the degree of sm is m+ 1, (9.18) implies
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cm+1 > 0. Thus, for n ≥ 0

(km − cm+1) · nm+1 is a strictly monotonically decreasing polynomial
with degree m+ 1 for any 0 < km < min(1, cm+1). (9.22)

Let 0 < kmax < min(cm+1, 1). If (9.21) holds for all n > 1 and km = kmax,
then the claim (9.20) follows immediately. Thus, assume that there is an n > 1
such that (9.21) does not hold for km = kmax. Let n0 > 1 be the maximal
natural number such that (9.21) is violated for km = kmax, i.e., (9.21) holds for
all n > n0. Note that n0 exists due to (9.22), as the degree of

∑m
i=1 ci · ni is at

most m. Then clearly

(9.21) holds for all n > n0 and all 0 < km ≤ kmax. (9.23)

Let km = min
(
kmax,

1
nm+1

0

)
. Then we get:

∑m
i=1 ci · ni

= sm − cm+1 · nm+1 as sm =
∑m+1
i=1 ci · ni

≥ 1− cm+1 · nm+1 for all n > 1 by (9.19)
≥ nm+1

nm+1
0
− cm+1 · nm+1 for all n ≤ n0

≥ min
(
kmax · nm+1, n

m+1

nm+1
0

)
− cm+1 · nm+1

= (km − cm+1) · nm+1,

i.e., (9.21) holds for all 1 < n ≤ n0. Thus, as we have

km = min
(
kmax,

1
nm+1

0

)
≤ kmax,

(9.21) holds for all n > 1 due to (9.23), which finishes the proof of (9.20).
Hence, for all n > 1 we have

c = ib +
∑dis
m=0 tm · sm by (9.16)

≥ ib +
∑dis
m=0 tm · (ki · nm+1) by (9.20)

≥ ib + k ·
∑dis
m=0 tm · nm+1 where k = min{k1, . . . , kdis}

= ib + k · n ·
∑dis
m=0 tm · nm

≥ k · (ib + n ·
∑dis
m=0 tm · nm) as 0 < k ≤ 1 and ib is non-negative

= k · (ib + n · is) by (9.13)
≥ k · (ib + n · is{n/n− 1}) due to monotonicity of is.

Note that is is weakly monotonically increasing as it is a sum of costs of
rewrite lemmas, which are weakly monotonically increasing by Definition 9.5.
This finishes the proof of (9.12).
Now we consider the case where the induction hypothesis was used several
times, i.e., ih > 1. In this case, the valid conjecture corresponds to a family of
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rewrite sequences with exponential costs. More precisely, Lemma 9.25 implies

c ≥ ihn · ib (9.24)

and, if A |= is ≥ 1, c = ihn · ib +
∑n−1
i=0 ihn−1−i · is{n/i}

≥ ihn · ib +
∑n−1
i=0 ihn−1−i

= ihn · ib +
∑n−1
j=0 ihj

= ihn · ib + ihn−1
ih−1 .

(9.25)

Theorem 9.31 (Asymptotic Runtime of Valid Conjectures). Let s 	n−−→? t be
a conjecture with an induction proof as in Theorem 9.22 where the induction
hypothesis s→ t was applied ih times. Let proci be the processor mapping
cp(L,G) to cp(L ∪ {s ci−→ t},G) where

(1) c1 = ib + n · is{n/n− 1} if is is a polynomial and ih = 1,

(2) c2 = ihn · ib + ihn−1
ih−1 if ih > 1 and A |= is ≥ 1, and

(3) c3 = ihn · ib if ih > 1.

Then proc1 is asymptotically sound for lower bounds and proc2 and proc3
are sound for lower bounds.

Proof. According to Theorem 9.26, the processor mapping cp(L,G) to cp(L ∪
{s c−→ t},G) is sound for lower bounds. Thus, proc1 is asymptotically sound due
to (9.12) and proc2 and proc3 are sound due to (9.25) and (9.24).

Example 9.32 (Exponential Runtime). To illustrate Theorem 9.31, let

Lexp = {f(succ(x), succ(x))→ f(f(x, x), f(x, x)), f(zero, zero)→ zero}.

Our approach speculates and proves the conjecture

f(genNat(n), genNat(n)) 	n−−→? zero.

The induction base is f(genNat(0), genNat(0)) ≡G f(zero, zero)→Lexp zero, i.e.,
ib = 1. The induction step is:

f(genNat(n+ 1), genNat(n+ 1)) ≡G
f(succ(genNat(n)), succ(genNat(n))) 1−→Lexp

f(f(genNat(n), genNat(n)), f(genNat(n), genNat(n))) 7→2
αih

f(zero, zero) 1−→Lexp

zero
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Thus, ih = 2 and is = 2. Hence, by Theorem 9.31 (2), adding the rewrite
lemma f(genNat(n), genNat(n)) 2n+1−1−−−−−→ zero to Lexp is sound for lower bounds.
Indeed, Theorem 9.26 implies

c = 2n +
n−1∑
i=0

2n−1−i · 2 = 2n+1 + 2n − 2 ≥ 2n+1 − 1.
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We now use rewrite lemmas to infer lower bounds on rccp(L,G). While we
already know the cost function c of each rewrite lemma s c−→ t ∈ L, rccp(L,G) is
defined w.r.t. the size of the start term of a rewrite sequence. To obtain a lower
bound for rccp(L,G) from c, for any substitution σ one has to take the relation
between cσ and the size of the start term sσ into account. Our approach in
Section 9.2 only speculates lemmas where s = f(genτ1(s1), . . . , genτm(sm)) for
some f ∈ Σd(L), polynomials s1, . . . , sm, and simply structured types τ1, . . . , τm.
For any τi, let dτi : τ ′1 × . . . × τ ′b → τ be τi’s recursive constructor. Then for
any n ∈ N, Definition 9.4 implies

∥∥genτi(n)
∥∥
G =

∥∥genτi(0)
∥∥
G + n ·

(
1 +

b∑
i=1

∥∥∥genτ ′
i
(0)
∥∥∥
G
−
∥∥genτi(0)

∥∥
G

)
.

The reason is that the term genτi(n) contains n occurrences of dτi and of each
genτ ′1(0), . . . , genτ ′

b
(0) except for genτi(0), and just one occurrence of genτi(0).

For instance, we have:

‖genNat(n)‖G = ‖genNat(0)‖G + n · (1 + ‖genNat(0)‖G − ‖genNat(0)‖G)
= ‖zero‖t + n

= 1 + n

‖genList(n)‖G = ‖genList(0)‖G + n · (1 + ‖genNat(0)‖G)
= ‖nil‖t + n · (1 + ‖zero‖t)
= 1 + n · 2

Thus ‖s‖G =
∥∥f(genτ1(s1), . . . , gen

m
(sm))

∥∥
G with V(s) = n is given by

sz(n) = 1 +
∥∥genτ1(s1)

∥∥
G + . . .+

∥∥genτm(sm)
∥∥
G .

For instance, qs(genList(n)) ≡G∪A qs(consn(zero, nil)) has the size sz(n) = 1 +
‖genList(n)‖G = 2 ·n+ 2. Since ‖genτ (0)‖G is a constant for each type τ , sz is a
polynomial whose degree is the maximal degree of the polynomials s1, . . . , sk.
Hence, the rewrite lemma (9.1) for qs states that there are terms of size sz(n) =
2 · n + 2 with reductions whose costs are at least c = 3 · n2 + 2 · n + 1. To
determine a lower bound for rccp(Lqs,Gqs), we construct an inverse function sz−1

with (sz ◦ sz−1)(n) = n. In our example where sz(n) = 2 · n + 2, we have
sz−1(n) = n−2

2 if n is even. Thus, for all even n there are terms of size n

with reductions of length c{n/sz−1(n)} = c{n/n−2
2 } = 3

4 · n
2 − 2 · n+ 2. Since

multivariate polynomials sz(n) cannot be inverted, we invert the unary function
szN : N→ N with szN(n) = sz(n, . . . , n) instead.
Of course, inverting szN fails if szN is not injective. However, the conjectures
speculated in Section 9.2 only contain polynomials with natural coefficients.
Then, szN is always strictly monotonically increasing. Hence, we only proceed
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if there is an sz−1
N : img(szN) → N where (szN ◦ sz−1

N )(n) = n holds for all
n ∈ img(szN). To extend sz−1

N to a function on {n ∈ N | n ≥ min(img(szN))},
we define

bsz−1
N c(m) = sz−1

N (max{m′ ∈ img(szN) | m′ ≤ m}).

Then Theorem 9.33 states how we can derive lower bounds for rccp(L,G).

Theorem 9.33 (Explicit Bounds for rccp(L,G)). Let s c−→ t ∈ L where s ∈
Tbasic(L,G) and all variables from V(s) = n have type N, let sz : Nlen(n) → N
be defined by sz(c) = ‖s{n/c}‖G, and let szN be injective, i.e., sz−1

N exists.
Then for all n ∈ N with n ≥ min(img(szN)), we have

rccp(L,G)(n) ≥ c{x/bsz−1
N c(n) | x ∈ V(s)}.

Proof. Let len(n) = m. If n ≥ min(img(szN)), then there is a maximal n′ ≤ n
such that n′ ∈ img(szN). Thus, bsz−1

N c(n) = sz−1
N (n′). Moreover, we have∥∥s{n|1/sz−1

N (n′), . . . ,n|m/sz−1
N (n′)}

∥∥
G = sz(sz−1

N (n′), . . . , sz−1
N (n′))

= szN(sz−1
N (n′))

= n′.

Thus, we have rccp(L,G)(n′) ≥ c{x/bsz−1
N c(n) | x ∈ V(s)}. Since n ≥ n′, we get

rccp(L,G)(n) ≥ c{x/bsz−1
N c(n) | x ∈ V(s)}.

In the rewrite lemma (9.1) for qs where szN(n) = 2 ·n+ 2, we have bsz−1
N c(n) =

bn−2
2 c ≥

n−3
2 and

rccp(Lqs,Gqs)(n) ≥ c{n/bsz−1
N c(n)} ≥ c

{
n

/
n− 3

2

}
= 3

4 · n
2 − 7

2 · n+ 19
4

for all n ≥ 2.
However, even if sz−1

N exists, finding resp. approximating sz−1
N automatically can

be non-trivial in general. Therefore, we now show how to obtain an asymptotic
lower bound for rccp(L,G) directly from a rewrite lemma

f(genτ1(s1), . . . , genτm(sm)) c−→ t

as in Theorem 9.31 without constructing sz−1
N . As mentioned, if e is the

maximal degree of the polynomials s1, . . . , sk, then sz is also a polynomial
of degree e and thus, szN(n) ∈ O(ne). Moreover, Theorem 9.31 (1) – (3)
immediately give rise to a polynomial or exponential asymptotic complexity class
for cN = c{m/n | m ∈ V(c)}. Thus, as in Chapter 4, we can use Lemma 4.41
to infer an asymptotic lower bound on rccp(L,G).
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Lemma (Bounds for Function Composition (Repetition of Lemma 4.41)).
Let f : N → R≥0 and g : N → N where g(m) ∈ O(md) for some d ∈ N with
d > 0. Moreover, let f(m) be weakly and let g(m) be strictly monotonically
increasing for large enough m.

• If f(g(m)) ∈ Ω(mk) with k ∈ N, then f(m) ∈ Ω(m k
d ).

• If f(g(m)) ∈ Ω(km) with k > 1, then f(m) ∈ Ω(b d
√
m) for some b > 1.

To apply the lemma, we set f(m) = cN{m/sz−1
N (m)} and g(m) = szN(m). Then

we get f(g(m)) = cN{m/sz−1
N (szN(m))} = cN. Note that for all rewrite lemmas

that were inferred by the techniques presented in Sections 9.2 and 9.3, the func-
tion g(m) = szN(m) and thus also sz−1

N (m) is strictly monotonically increasing
by construction. Thus, since we restricted ourselves to weakly monotonically
increasing cost functions, f(m) = cN{m/sz−1

N (m)} is weakly monotonically
increasing, i.e., Lemma 4.41 is indeed applicable.
To illustrate the application of Lemma 4.41, assume that szN is a polynomial of
degree d. If cN is a polynomial of degree k, then Lemma 4.41 allows us to deduce
f(n) = cN{n/sz−1

N (n)} ∈ Ω(n kd ) and thus rccp(L,G)(n) ∈ Ω(n kd ). Similarly, if cN
is an exponential function, then Lemma 4.41 yields f(n) = cN{n/sz−1

N (n)} ∈
Ω(b d

√
n) and thus rccp(L,G)(n) ∈ Ω(b d

√
n) for some b > 1.

So for the rewrite lemma qs(genList(n)) c−→ genList(n) where cN = c and szN = sz,
we only need the asymptotic bounds szN(n) ∈ O(n) and cN ∈ Ω(n2) to infer
that Quicksort has at least quadratic complexity, i.e., rccp(Lqs,Gqs)(n) ∈ Ω(n 2

1 ) =
Ω(n2).
Thus, we obtain the following corollary.

Corollary 9.34 (From Rewrite Lemmas to rc). Let s c−→ t ∈ L be a rewrite
lemma where all variables in V(s) have type N and szN is a polynomial of
degree d.
If cN(n) ∈ Θ(nk), then rccp(L,G)(n) ∈ Ω(n kd ).
If cN(n) ∈ Θ(kn) with k > 1, then rccp(L,G)(n) ∈ Ω(b d

√
n) for some b > 1.

Proof. Immediate consequence of Lemma 4.41.
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Our technique often fails if the analyzed set of rewrite lemmas is not completely
defined, i.e., if there are well-typed ground normal forms containing defined
symbols. As an example, the runtime complexity of

Lin = {f(succ(x)) 1−→ succ(f(x))}

is linear due to the rewrite sequences f(succn(zero)) n−⇀∗ succn(f(zero)). However,
the term succn(f(zero)) on the right-hand side contains f and thus it cannot
be represented in a rewrite lemma. Therefore, we now also allow indefinite
conjectures and rewrite lemmas with unknown right-hand sides. Then for our
example, we could speculate the indefinite conjecture f(genNat(n)) 	n−−→? ?,
which gives rise to the indefinite rewrite lemma f(genNat(n)) n−→ ?, where ? is a
fresh constant that represents an arbitrary unknown term.
Recall that when speculating conjectures in Section 9.2, we built a narrowing
tree for a term s = f(. . .) and obtained a sample conjecture sσ 	d−−→! t whenever
we reached a normal form t. When speculating indefinite conjectures, we do
not narrow in order to reach normal forms, but we create a sample conjecture
sσ

	d−−→! ? after each application of a recursive f-rule. Here, σ is again the
substitution and d is the recursion depth of the corresponding path in the
narrowing tree. Note that we do not use previous indefinite rewrite lemmas
during narrowing, since they do not yield any information on the terms resulting
from rewriting.

Example 9.35 (Speculating Indefinite Conjectures). For Lin, we narrow
the term s = f(genNat(x)). We get f(genNat(x)) succ(f(genNat(x′))) with
the substitution σ1 = {x/x′ + 1}. Since we applied a recursive f-rule once,
we construct the sample conjecture sσ1

	1−−→! ?. We continue narrowing and
get succ(f(genNat(x′)))  succ(succ(f(genNat(x′′)))) with the substitution
σ2 = {x′/x′′ + 1} and recursion depth 2. Since σ1 � σ2 corresponds to
{x/x′′ + 2}, this yields the sample conjecture s{x/x′′ + 2} 	2−−→! ?. Another
narrowing step results in the sample conjecture s{x/x′′′ + 3} 	3−−→! ?.
These sample conjectures are identical up to the occurring numbers and
variable names. Thus, they are suitable for generalization. As in Section 9.2,
we replace the numbers in the sample conjectures by polynomials pol in one
variable n that represents the recursion depth. This leads to the conjecture
f(genNat(x+pol)) 	n−−→? ? and the constraints pol(1) = 1, pol(2) = 2, pol(3) =
3. These constraints have the solution pol(n) = n. Thus, we speculate the
indefinite conjecture f(genNat(x+ n)) 	n−−→? ?.

In principle, proving indefinite conjectures s −→∗ ? is not necessary, since adding
s 0−→ ? to L is always sound. However, to derive useful lower complexity bounds,
we need rewrite lemmas s c−→ ? with non-trivial cost functions c. Theorem 9.36
shows that the approaches for proving lemmas from Section 9.3 and for deriving
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bounds from these proofs in Section 9.4 can also be used for indefinite rewrite
lemmas.

Theorem 9.36 (Bounds for Indefinite Rewrite Lemmas). Let τ 6= N be a
type, let L be left-linear w.r.t. variables of type τ7, let ? be a fresh constant
of type τ , and let s be a term of type τ such that n ∈ V(s) and all variables
in V(s) have type N. If s{n/0} ib−⇀∗ q and s{n/n + 1} is−⇀+

s→?,n p for some
terms p, q where the rule “s → ?” is applied ih times, then the processor
mapping cp(L,G) to cp(L ∪ {s c−→ ?},G) is sound for lower bounds. Here, c
is computed as in Theorem 9.26 or Theorem 9.31.

Proof. Let c be as in Theorem 9.26. Then soundness for the case that c is
computed as in Theorem 9.31 follows as in the proof of Theorem 9.31. Let
L′ = L ∪ {s → ?}. For any terms p, q, we define p �? q if q results from p

by replacing arbitrarily many occurrences of ? with (possibly different) other
terms. Clearly, −⇀ is closed under �?, i.e., t0 k−⇀ tn and t0 �? t′0 implies t′0

k−⇀ t′n
for some term t′n such that tn �? t′n. The reason is that ? is fresh and L is
left-linear w.r.t. variables of type τ . Similarly, 7→`→?,n is closed under �? (and
thus −⇀`→?,n) if ` is linear w.r.t. variables of type τ and does not contain ?.
Thus, it remains to show that for any µ : V(s)→ N there exists a term t ∈ T (Σ)
such that sµ k−⇀∗ t where k ≥ cµ holds. Then we get

t0
k1−−⇀∗ t1

cµ2−−→s c−→? t2
k3−−⇀∗ . . .

cµn−1−−−−→s c−→? tn−1
kn−−⇀∗ tn�

?

�
?

�
? . . .

�
?

�
?

t0
k1−−⇀∗ t1

≥cµ2−−−⇀∗ t′2
k3−−⇀∗ . . .

≥cµn−1−−−−−⇀ t′n−1
kn−−⇀∗ t′n

(where t′i−1
≥cµi−−−⇀∗ t′i means that reducing t′i−1 to t′i has at least cost cµi) for

every rewrite sequence t0 −→L′/G∪A tn as −⇀ is closed under �?, which suffices
to prove the theorem. We use induction on nµ.
For the induction base, assume nµ = 0. By the prerequisites of the theorem,
we have s{n/0} ib−⇀∗ q. By Lemma 9.27 (a), −⇀ is stable and thus we get
sµ = s{n/0}µ (ib)µ−−−⇀∗ qµ. Finally, we have cµ = c{n/0}µ = (ib)µ.
In the induction step, we have nµ > 0. Let µ′ : V(s)→ N where µ′ is like µ for
all V(s) \ {n} and nµ′ = nµ− 1. We have

s{n/n+ 1} = v1
c1θ1−−⇀s→?,n . . .

coθo−−⇀s→?,n vo+1 = p

with o > 0 and is =
∑o
i=1 ciθi by the prerequisites of the theorem. By

Lemma 9.27 (b), we obtain

s{n/n+ 1}µ′
= v1µ

′ c1θ1µ′−−−−⇀sσ1→?,n . . .
coθoµ′−−−−⇀sσo→?,n vo+1µ

′ =
pµ′

(9.26)

7This means that no left-hand side contains a variable of type τ twice.
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for substitutions σi : V(s) → N such that sσi is ground, nσi = nµ′, and
mσi ≥ mµ′ for all m ∈ V(s).
For each step viµ

′ 7→sσi→?,n vi+1µ
′, there is a term ti such that

sσi
ki−⇀∗ ti with ki ≥ cσi (9.27)

by the induction hypothesis since nσi = nµ′ = nµ−1. As c is weakly monotonic
and mσi ≥ mµ′ for each m ∈ V(c) ⊆ V(s), this implies ki ≥ cµ′. From (9.27)
we get viµ′

ki−⇀∗ v′i+1 with vi+1µ
′ �? v′i+1. Since −⇀ is closed under �?, we get

v1µ
′ c1θ1µ′−−−−⇀sσ1−→?,n v2µ

′ c2θ2µ′−−−−⇀sσ2−→?,n . . .
coθoµ′−−−−⇀sσo−→?,n vo+1µ

′

�
?

�
? . . .

�
?

v1µ
′ k1−−⇀∗ v′2

k2−−⇀∗ . . .
ko−−⇀∗ v′o+1

where ki = ciθiµ′ if viµ′ −⇀ vi+1µ
′ and ki ≥ cµ′ if viµ′ 7→sσi−→?,n vi+1µ

′, i.e.,

s{n/n+ 1}µ′ = v1µ
′ k1+...+ko−−−−−−−⇀+ v′o+1.

Since there are ih many 7→-steps (which have cost 0 in (9.26)), we get

k1 + . . .+ ko ≥ ih · cµ′ +
o∑
i=1

ciθiµ′ = ih · cµ′ + (is)µ′ (9.8)= c{n/n+ 1}µ′.

This proves the claim, since sµ ≡A s{n/n+ 1}µ′ and cµ ≡A c{n/n+ 1}µ′.

Thus, the costs of indefinite rewrite lemmas can be computed analogously to
the costs of definite rewrite lemmas. To illustrate Theorem 9.36, we continue
Example 9.35.

Example 9.37 (Complexity of Indefinite Rewrite Lemmas). We now infer
the runtime function c of the rewrite lemma α = f(genNat(x + n)) c−→ ?.
We have ib = 0, since f(genNat(x + 0)) is already in normal form. In the
induction step, we obtain

f(genNat(x+ n+ 1)) 1−⇀ succ(f(genNat(x+ n))) 7→α,n succ(?).

Thus, the induction hypothesis is applied ih = 1 times and we have is = 1.
According to Theorem 9.26, we have

c = ihn · ib +
∑n−1
i=0 ihn−1−i · is{n/i} = 1n · 0 +

∑n−1
i=0 1n−1−i · 1 = n.

Alternatively, Theorem 9.31 yields c = ib + n · is{n/n − 1} = n. Thus,
every lower bound for L′ = Lin ∪ {f(genNat(x + n)) n−→ ?} is also valid for
Lin. To obtain a bound on the runtime complexity of L′, we compute sz =
‖f(genNat(x+ n))‖G = x+n+2. Since szN = 2 ·n+2 is linear, Corollary 9.34
implies rccp(L′,G)(n) ∈ Ω(n). Thus we also have rccp(Lin,G)(n) ∈ Ω(n).
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A drawback of our approach is that generator symbols only represent homo-
geneous data objects (e.g., lists or trees where all elements have the same
value zero). To prove lower complexity bounds also in cases where one needs
other forms of rewrite lemmas, we use argument filtering [12] to remove certain
argument positions of function symbols.

Example 9.38 (Argument Filtering). Consider the following TRS Rintlist:

intlist(zero) 1−→ nil intlist(succ(x)) 1−→ cons(x, intlist(x))

For all n ∈ N we have:
intlist(succn(zero)) n+1−−−⇀∗ cons(succn−1(zero), . . . cons(succ(zero), cons(zero, nil)))

However, the inhomogeneous list on the right cannot be expressed using
generator symbols. Filtering the first argument of cons yields (Rintlist)\(cons,1):

intlist(zero) 1−→ nil intlist(succ(x)) 1−→ cons(intlist(x))

For this TRS, our approach can speculate and prove the rewrite lemma

intlist(genNat(n)) n+1−−−→ genList(n), i.e.,
intlist(succn(zero)) n+1−−−→ consn(nil).

From this rewrite lemma, one can infer rccp((Rintlist)\(cons,1),G)(n) ∈ Ω(n).

Definition 9.39 introduces the concept of argument filtering for terms and TRSs
formally.

Definition 9.39 (Argument Filtering). Let Σ be a signature with f ∈ Σ,
arΣ(f) = n, and let i ∈ {1, . . . , n}. Let Σ\(f,i) be like Σ, but with arΣ\(f,i)(f) =
n − 1. For any term t ∈ T (Σ,V), we define the term t\(f,i) ∈ T (Σ\(f,i),V)
resulting from filtering the ith argument of f. If t ∈ V, then we have t\(f,i) = t.
Otherwise, we have t = g(t1, . . . , tb) and:

t\(f,i) =
{

g((t1)\(f,i), . . . , (ti−1)\(f,i), (ti+1)\(f,i), . . . , (tb)\(f,i)) if f = g
g((t1)\(f,i), . . . , (tb)\(f,i)), if f 6= g

Let R be a TRS over Σ. Then we define

R\(f,i) = {`\(f,i)
k−→ r\(f,i) | ` k−→ r ∈ R}.

However, a lower bound for the runtime of R\(f,i) does not imply a lower bound
for R if the argument that is filtered away influences the control flow of the
evaluation. Thus, several conditions have to be imposed to ensure that argument
filtering is sound for lower bounds:

189



Chapter 9. Induction Technique

(1) Argument filtering must not remove function symbols on left-
hand sides of rules.
An argument may not be filtered away if it is used for non-trivial pattern
matching (i.e., if there is a left-hand side of a rule where the ith argument
of f is not a variable). As an example, consider

R = {f(cons(true, xs))→ f(cons(false, xs))}

where rccp(R)(n) ≤ 1 for all n. But if one filters away the first argument of
cons, then one obtains the non-terminating rule f(cons(xs))→ f(cons(xs)),
i.e., rccp(R\(cons,1))(n) = ω for n ≥ 3.

(2) The TRS must be left-linear. To illustrate this, consider

R = {f(xs, xs)→ f(cons(true, xs), cons(false, xs))},

where again rccp(R)(n) ≤ 1. But filtering away the first argument of
cons yields the non-terminating rule f(xs, xs)→ f(cons(xs), cons(xs)), i.e.,
rccp(R\(cons,1))(n) = ω for n ≥ 3.

(3) Argument filtering must not result in free variables on right-
hand sides of rules.
The reason is that, otherwise, the resulting system is not a valid TRS
since, by definition, V(r) ⊆ V(`) must hold for each TRS rule `→ r.

Theorem 9.40 states that (1) – (3) are indeed sufficient for the soundness
of argument filtering. To infer a lower bound for rccp(R) from a bound for
rccp(R\(f,i)), we have to take into account that filtering changes the size of terms.
As an example, consider R = {f(x) 1−→ a}. Here, we have rccp(R\(f,1))(1) = 1 due
to the rewrite sequence f 1−→R\(f,1)

a. The corresponding rewrite sequence in the
original TRS R is f(x) 1−→R a. Thus, rccp(R)(2) = 1, but all terms of size 1 are
normal forms of R, i.e., rccp(R)(1) = 0. So rccp(R\(f,i))(n) ≤ rccp(R)(n) does not
hold in general. Nevertheless, for any rewrite sequence of R\(f,i) starting with
a term t, there is a corresponding rewrite sequence of R starting with a term8

s where |s| ≤ 2 · |t|. Thus, if we have derived a lower bound p for rccp(R\(f,i))(n),
we can use p{n/n2 } as a lower bound for rccp(R)(n). In Example 9.38, we have
‖intlist(succn(zero))‖t = n+ 2 and thus we obtain rccp((Rintlist)\(cons,1))(n) ≥ n− 1
by Theorem 9.33. Hence, we get (n− 1){n/n2 } = n

2 − 1 ≤ rccp(Rintlist)(n) for all
n ≥ 4 resp. rccp(Rintlist)(n) ∈ Ω(n).

8The term s can be obtained from t by adding a variable as the ith argument for any f
occurring in t.
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9.7. Argument Filtering

Theorem 9.40 (Soundness of Argument Filtering). Let f ∈ Σ, arΣ(f) = n,
and i ∈ {1, . . . , n}. Moreover, let R be a left-linear TRS over Σ where the
following conditions hold for all rules `→ r ∈ R:

(1) If f(t1, . . . , tk) is a subterm of `, then ti ∈ V.

(2) V(r\(f,i)) ⊆ V(`\(f,i)).

Then the processor mapping cp(R) to cp(R\(f,i)) is asymptotically sound for
lower bounds.

Proof. For each substitution σ, we define σ\(f,i) = {x/t\(f,i) | xσ = t}. Note
that we clearly have

(sσ)\(f,i) = s\(f,i)σ\(f,i) and (9.28)
C[s]\(f,i) = C\(f,i)[s\(f,i)] if � occurs in C\(f,i). (9.29)

We first prove that the following holds for every linear term s where the ith
argument of every occurrence of f is a variable:

If s\(f,i)θ = t\(f,i),

then sσ = t for some σ with σ\(f,i)|V(s\(f,i)) = θ|V(s\(f,i)). (9.30)

We use induction on s. If s is a variable, then we have s = s\(f,i), σ = {s/t},
and σ\(f,i)|V(s\(f,i)) = {s/t\(f,i)} = θ|V(s\(f,i)). Otherwise, we have root(s\(f,i)) =
root(t\(f,i)) since s\(f,i) matches t\(f,i). Moreover, we clearly have root(s\(f,i)) =
root(s) and root(t\(f,i)) = root(t). Thus, we have root(s) = root(t), i.e., s =
g(s1, . . . , sm) and t = g(t1, . . . , tm). By the induction hypothesis, we know:

If (sj)\(f,i)θj = (tj)\(f,i),

then sjσj = tj for some σj with (σj)\(f,i)|V((sj)\(f,i)) = θj |V((sj)\(f,i)).

If g 6= f, then we have (sj)\(f,i)θ = (tj)\(f,i) for each j ∈ {1, . . . ,m}. Thus,
there are substitutions σj such that sjσj = tj and (σj)\(f,i)|V((sj)\(f,i)) =
θ|V((sj)\(f,i)) for all j ∈ {1, . . . ,m}. W.l.o.g., assume dom(σj) ⊆ V(sj) for
each j ∈ {1, . . . ,m}. Then we get sσ = t where σ = σ1 � . . . � σm since s is
linear. Moreover, we have

σ\(f,i)|V(s\(f,i))
= (σ1)\(f,i)|V(s\(f,i)) � . . . � (σm)\(f,i)|V(s\(f,i)) by definition of σ
= (σ1)\(f,i)|V((s1)\(f,i)) � . . . � (σm)\(f,i)|V((sm)\(f,i)) as dom(σj) ⊆ V(sj)
= θ|V((s1)\(f,i)) � . . . � θ|V((sm)\(f,i))
= θ|V(s\(f,i)) as s is linear.

If g = f, then we have (sj)\(f,i)θ = (tj)\(f,i) for each j ∈ {1, . . . ,m} \ {i}.
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Thus, there are substitutions σj such that sjσj = tj and (σj)\(f,i)|V((sj)\(f,i)) =
θ|V((sj)\(f,i)) for all j ∈ {1, . . . ,m} \ {i}. W.l.o.g., assume dom(σj) ⊆ V(sj) for
each j ∈ {1, . . . ,m} \ {i}. Since si is a variable and s is linear, we get sσ = t

with σ = σ1 � . . . � σm where σi = {si/ti}. Let σ′j = (σj)\(f,i). Then we have
σ\(f,i)|V(s\(f,i))

= σ′1|V(s\(f,i)) � . . . � σ′m|V(s\(f,i)) by definition of σ
= σ′1|V(s\(f,i)) � . . . � σ′i−1|V(s\(f,i)) � σ′i+1|V(s\(f,i)) � . . . � σ′m|V(s\(f,i))

as si /∈ V(s\(f,i)) since s is linear
= σ′1|V((s1)\(f,i)) � . . . � σ′i−1|V((si−1)\(f,i)) � σ′i+1|V((si+1)\(f,i)) � . . . � σ′m|V((sm)\(f,i))

as dom(σj) ⊆ V(sj)
= θ|V((s1)\(f,i)) � . . . � θ|V((si−1)\(f,i)) � θ|V((si+1)\(f,i)) � . . . � θ|V((sm)\(f,i))

as σ′j |V((sj)\(f,i)) = (σj)\(f,i)|V((sj)\(f,i)) = θ|V((sj)\(f,i))
= θ|V(s\(f,i)) as s is linear.

This finishes the proof of (9.30).
Now we prove that

s′ k−→R\(f,i)
t′ and s′ = s\(f,i) implies s k−→R t for some t with t′ = t\(f,i).

Then s′0
k−→∗R\(f,i)

s′m with s′0 ∈ Tbasic(R\(f,i)) implies that there is an sm such
that s0

k−→∗R sm where s0 ∈ Tbasic(R) results from s′0 by adding a fresh variable
as ith argument to every occurrence of f. Thus, as observed above, we have
|s0| ≤ 2 · |s′0|, which suffices to prove the theorem.
Let `\(f,i)

k−→ r\(f,i) and θ be the rule and the substitution of the rewrite step
s′ k−→R\(f,i)

t′, i.e., we have s′ = C[`\(f,i)θ] k−→R\(f,i)
C[r\(f,i)θ] = t′ for some

context C. Then s′ = C[`\(f,i)θ] = s\(f,i) implies that s is of the form D[p]
where D\(f,i) = C and p\(f,i) = `\(f,i)θ. Thus, (9.30) implies that there is a
substitution σ such that `σ = p and σ\(f,i)|V(`\(f,i)) = θ|V(`\(f,i)). Hence, we have
s = D[p] = D[`σ] k−→R D[rσ] = t. It remains to show t\(f,i) = t′. We have

t\(f,i) = D[rσ]\(f,i)
= D\(f,i)[(rσ)\(f,i)] by (9.29)
= C[(rσ)\(f,i)] as D\(f,i) = C

= C[r\(f,i)σ\(f,i)] by (9.28)
= C[r\(f,i)(σ\(f,i)|V(`\(f,i)))] as V(r\(f,i)) ⊆ V(`\(f,i))
= C[r\(f,i)θ|V(`\(f,i))] as σ\(f,i)|V(`\(f,i)) = θ|V(`\(f,i))
= C[r\(f,i)θ] as V(r\(f,i)) ⊆ V(`\(f,i))
= t′.

Clearly, the processor from Theorem 9.40 can also be used in combination with
other techniques for the inference of lower bounds like the loop detection tech-
nique from Chapter 8. However, our experimental evaluation shows that loop
detection does not benefit from our argument filtering technique, cf. Chapter 12.
In our implementation, as a heuristic we always perform argument filtering
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prior to the induction technique if it is permitted by Theorem 9.40, except for
cases where filtering removes defined function symbols on right-hand sides of
rules. As an example, consider R = {a → f(a, b)} where rccp(R)(n) = ω for
n ≥ 1. If one filters away f’s first argument, then one obtains a → f(b) and
thus, rccp(R\(f,1))(n) = 1 for n ≥ 1. So here, argument filtering is sound, but it
results in significantly worse lower bounds.
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Like loop detection, the induction technique can easily be adapted to innermost
rewriting. To do so, we first show that the step from innermost rewriting to
innermost equational rewriting is sound.

Theorem 9.41 (From Term Rewriting to Rewrite Lemmas). Let R be a
well-typed TRS over a standard signature Σ. Then the processor mapping
cpi(R) to cpi(R,GR) is sound for lower bounds.

Proof. As in the proof of Theorem 9.13, s k−⇀
i

t where s and t are ground
implies s↓GfR/A

k−→R t↓GfR/A where both rewrite steps use the rule ` k−→ r, the
former rewrite step uses the substitution σ, and the latter rewrite step uses the
substitution σ′ = {x/xσ↓GfR/A | x ∈ dom(σ)}. By definition of −⇀

i
, all proper

subterms of `σ are in −⇀-normal form. Since we have `σ ≡G∪A `σ′ by definition
of σ′, this implies that all proper subterms of `σ′ are in −⇀-normal form. Since
−→
i R ⊆ −⇀, this means that all proper subterms of `σ′ are in −→

i R-normal form.
Thus, we get s↓GfR/A

k−→
i R t↓GfR/A.

Moreover, we have to adapt our notion of valid conjectures.

Definition 9.42 (Validity of Innermost Conjectures). A conjecture s 	n−−→
i

? t

is valid for L if sσ −⇀
i

∗ tσ holds for all σ : V(s)→ N.

Finally, we have to use non-overlapping rewriting modulo G ∪ A to prove the
validity of conjectures (cf. Example 9.46, which illustrates why this is crucial
for the correctness of our approach for innermost rewriting).

Definition 9.43 (Non-Overlapping Rewriting Modulo). Let L be a set of
rewrite lemmas and let E be a set of equations. We define s c′−→n L/E t if there
is a context C, a rewrite lemma ` c−→ r ∈ L, and a substitution σ such that
s ≡E C[`σ], C[rσ] ≡E t, c ≡A cσ, and `σ . t /∈ V implies tθ 6≡E `′θ for each
substitution θ and each (variable-renamed) rule `′ −→ r′ ∈ L.

We write s −⇀n t instead of s −→n L/G∪A t. Again, we define q c−⇀n `→r,n p if q c−⇀n p or
c = 0 and q 7→`→r,n p. Then the following theorem show how to prove validity
of innermost conjectures.

Theorem 9.44 (Proving Conjectures). Let s 	n−−→
i

? t be a conjecture for L
with n ∈ V(s). If s{n/0} ib−⇀n ∗ t{n/0} and s{n/n + 1} is−⇀n +

s→t,n t{n/n + 1}
for some ib, is ∈ T (ΣN,V(s)), then the conjecture s 	n−−→

i

? t is valid for L.

To prove Theorem 9.44, we need to adapt Lemma 9.27 for non-overlapping
rewriting modulo.
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Lemma 9.45 (Stability of Non-Overlapping Rewriting Modulo). Let `, r, s,
and t be well-typed terms where s only contains variables of type N, and let
µ : V(s)→ N. Then we have:

(a) s c−⇀n t implies sµ cµ−⇀n tµ

(b) s c−⇀n `→r,n t implies that there is a substitution σ : V(`) → N with
nσ = nµ and mσ ≥ mµ for all m ∈ V(`) such that sµ cµ−⇀n `σ→rσ,n tµ.

Proof. We prove both claims individually.

(a) By the definition of −⇀n , s c−⇀n t implies that there is a context C, a substi-
tution σ, and a rule ` c′−→ r ∈ L such that s ≡G∪A C[`σ], C[rσ] ≡G∪A t,
and c′σ ≡A c. Moreover, `σ . t /∈ V implies tθ 6≡E `′θ for each substitution
θ and each (variable-renamed) rule `′ −→ r′ ∈ L.

We clearly have sµ ≡G∪A C[`σ]µ and C[rσ]µ ≡ tµ.

Assume that there exists a proper non-variable subterm q′ of `σµ that
unifies modulo G ∪ A with a variable-renamed left-hand side of a rule
from L. Since the root symbol of q′ must be from Σd(L) and the range of
µ does not include any defined symbols, we must have q′ = qµ for some
term q that is a proper non-variable subterm of `σ. But then q would
already unify modulo G ∪ A with a variable-renamed left-hand side of a
rule from L, which is a contradiction to s c−⇀n t above. Thus, we can also
conclude sµ cµ−⇀n tµ.

(b) If we also have s c−⇀n t, then the claim follows from (a). Otherwise, the
proof is analogous to the proof of Lemma 9.27 (b).

Using Lemma 9.45, Theorem 9.44 can be proven analogously to Theorem 9.22.
Furthermore, Theorem 9.26 and Theorem 9.31 trivially carry over to innermost
rewriting, too. The reason is that they just determine the costs of the family
of rewrite sequences whose existence is ensured by Theorem 9.22 resp. Theo-
rem 9.44. Thereby, the question whether this family of rewrite sequences is
innermost or not is irrelevant.
The following example illustrates why the restriction to non-overlapping rewrit-
ing in Theorem 9.44 is crucial.
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Example 9.46. Let

R = {f(succ(x))→ f(g(x)), f(g(x))→ f(x), f(zero)→ zero, g(zero)→ a}

and assume that we replace −⇀n by −⇀
i

in Theorem 9.44. Then we have

f(succn(zero)){n/0} 1−⇀
i

zero

and

f(succn(zero)){n/n+ 1} 1−⇀
i

f(g(succn(zero)))
1−⇀
i

f(succn(zero))
7→f(succn(zero))→zero,n zero,

i.e., we could prove that f(succn(zero)) 	n−−→
i

? zero is a valid innermost conjec-
ture. However, for all n > 0, we have f(succn(zero)) 6−⇀

i

∗ zero. Note that the
step f(g(succn(zero))) 1−⇀

i
f(succn(zero)) is overlapping, as g(succn(zero)) =

g(zero) for n = 0, i.e., by taking the generator equations into account,
g(succn(zero)) unifies with a left-hand side. Thus, the rewrite sequences
above violate the prerequisites of Theorem 9.44.

196



9.9 Induction Technique vs. Loop Detection

In this section, we investigate the relation between the two presented techniques
for the inference of lower bounds for term rewriting, namely loop detection
(Chapter 8) and the induction technique presented in the current chapter, and
we highlight their respective strengths and weaknesses.
Conceptually, the induction technique has two main drawbacks: its efficiency
is limited, since it heavily relies on equational unification, which is expensive in
practice. Moreover, it builds upon several heuristics, which restrict its power.
For instance, narrowing is used to speculate conjectures in Section 9.2, which is
non-deterministic. Hence, heuristics are applied to reduce the search space and
to decide when to stop narrowing. Consequently, the induction technique may
fail due to unfavorable heuristic decisions during the construction of narrowing
trees. Moreover, the definition of the generator functions in Definition 9.4 is a
heuristic as well, i.e., genτ (n) should be a “suitable” term of type τ . However,
there are examples where other generator functions than those in Definition 9.4
are needed.

Example 9.47 (Failure due to Inappropriate Generator Functions). Recon-
sider Example 7.2. If one uses the heuristic of Definition 9.4 for the choice of
generator functions, then genList only yields lists of zeros. However, for such
inputs the complexity of contains is constant, i.e., then one cannot prove the
desired linear lower bound.

In contrast, the loop detection technique from Chapter 8 does not require
equational unification (i.e., it is more efficient than the induction technique).
Moreover, it is not based on type inference and generator equations. Thus, it
avoids the problems that are due to the heuristics in the induction technique.
While the loop detection technique also applies narrowing, it only needs to find
a single narrowing sequence satisfying a specific condition. In contrast, the
induction technique requires multiple narrowing sequences which are suitable
for generalization, resulting in a narrowing tree.
However, as illustrated with the Quicksort-TRS of Example 9.1, the induction
technique can also infer super-linear polynomial bounds, which is not possible
with loop detection. Thus, the induction technique is indispensable in practice.
For linear lower bounds, loop detection is an extremely powerful technique as
mentioned in Section 8.3. In fact, as shown in [55, Theorem 38], regarding the
inference of linear lower bounds for ordinary left linear TRSs, it even subsumes
the induction technique. Moreover, the induction technique fails for Exam-
ple 7.10, while loop detection proves an exponential lower bound. However, for
exponential bounds, the induction technique and loop detection are orthogonal,
as the following example shows.
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Example 9.48. Consider the TRS R with the following rules:

f(zero) → zero
f(succ(x)) → succ(f(f(x)))

Here, f rewrites its only argument to itself in exponentially many steps. The
induction technique can prove the rewrite lemma

f(genNat(n)) c−→ genNat(n)

where c is exponential, i.e., the induction technique can prove an exponential
lower bound. The reason is that the induction hypothesis is applied twice
in the proof of the induction step. However, Theorem 8.12 cannot infer an
exponential lower bound by loop detection. The reason is that in this TRS,
there is no function symbol with an arity greater than 1. With such symbols
one cannot construct terms that have two independent positions ι1, ι2. Hence,
there are no two compatible decreasing loops.

Hence, for exponential bounds, there exist examples where the induction tech-
nique is successful whereas loop detection fails and vice versa. As the orthogo-
nality of both techniques also becomes evident in our experimental evaluation
(cf. Chapter 12), both techniques should be used in practice, as it is done by
recent versions of our tool AProVE. See [55] for a more detailed comparison of
loop detection and the induction technique.
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9.10 Related Work

Except for the loop detection technique from Chapter 8 (which has been com-
pared with the induction technique in detail in Section 9.9), there are no other
techniques for the inference of lower bounds on the complexity of term rewriting.
Apart from loop detection, techniques to prove non-termination of TRSs are
most closely related to our work. Among these, techniques to prove looping
non-termination are more similar to the loop detection technique and have been
discussed in detail in Section 8.5. Thus, we now focus on techniques to prove
non-looping non-termination.
The approach to prove non-looping non-termination which is most closely re-
lated to our technique is [41]. As mentioned in Chapter 6, it also generates
“meta rules” which represent families of rewrite sequences. However, it is unclear
whether the calculus from [41] can be extended in order to infer lower bounds on
the length of the rewrite sequences represented by these meta rules. Moreover,
the meta rules from [41] are only parameterized with a single variable, whereas
our rewrite lemmas may have several arguments of type N. Consequently,
common rewrite lemmas like

times(genNat(n), genNat(m)) −→ genNat(n ·m)

cannot be represented with the meta rules from [41]. On the other hand, [41]
does not rely on expensive techniques like equational unification. Thus, the
ideas from [41] and the current chapter are orthogonal.
Besides the approach from [41], the only other technique which can detect non-
looping non-termination of term rewrite systems is [43]. There, the underlying
idea is to find a tree-automaton that accepts a non-empty language L which is
closed under rewriting and does not contain normal forms. To this end, a SAT
encoding is used. The existence of such a language proves non-termination, as
any rewrite sequence starting in t ∈ L 6= ∅ is non-terminating. The reason
is that the existence of a rewrite sequence t −→∗R s where s is a normal form
would be a violation of L’s closure under rewriting (if s /∈ L) or of the property
that L does not contain normal forms (if s ∈ L). Clearly, this approach is
fundamentally different from ours.
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9.11 Conclusion and Future Work

We presented the induction technique, which uses inductive theorem proving
to infer lower bounds on the runtime complexity of term rewrite systems. The
basic idea is to speculate and prove conjectures representing families of rewrite
sequences. Thereby, narrowing is used to find representative rewrite sequences,
so-called sample conjectures, which are suitable for generalization (Section 9.2).
The generalized conjectures are then proven via induction, resulting in rewrite
lemmas (Section 9.3).
To achieve a symbolic representation of families of rewrite sequences and to
facilitate the inductive proofs, data structures are abstracted using generator
symbols in conjectures and rewrite lemmas. The semantics of these generator
symbols is provided by a set of generator equations. Consequently, these gener-
ator equations have to be taken into account when rewrite lemmas are used to
speculate and prove further conjectures. To this end, the induction technique
relies on rewriting and narrowing modulo equations.
While the complexity of a rewrite lemma can be obtained from its inductive
proof by solving recurrence equations, we also showed how to obtain the (asymp-
totic) complexity of a rewrite lemma directly, i.e., without solving recurrence
equations (Section 9.4). By taking the size of instances of left-hand sides of
rewrite lemmas into account, one finally obtains a lower bound on the complex-
ity of the analyzed TRS (Section 9.5).
One drawback of the induction technique is that speculating valid conjectures
is challenging in practice. Moreover, our technique to prove conjectures may
fail, even if the conjecture is valid. Thus, we presented two techniques which
allow us to infer a non-trivial lower bound even if we fail to speculated or prove
a conjecture for the original TRS: Indefinite lemmas (Section 9.6) allow us to
reason about families of rewrite sequences without knowing their result and
argument filtering (Section 9.7) allows us to simplify the TRS by discarding
arguments which do not influence its complexity, but potentially complicate
the inference of rewrite lemmas.
Finally, we also showed how to adapt our approach to innermost rewriting
(Section 9.8).
In future work, one should generalize the concept of indefinite lemmas, as it sig-
nificantly improves the power of the induction technique in practice (cf. Chap-
ter 12). For example, one may consider partially indefinite rewrite lemmas,
where only proper subterms of the right-hand side are unknown. Furthermore,
one should investigate different heuristics to speculate conjectures. The reason
is that the heuristic from Section 9.2 is based on narrowing, which is highly
non-deterministic. Thus, implementing it is delicate. Another problem which
requires further attention is the handling of non-homogeneous data structures
like, e.g., lists with several different elements. While the argument filtering
technique from Section 9.7 is an adequate way to deal with such data structures
in some cases, its gain is limited in practice (cf. Chapter 12). Hence, one should
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develop more powerful argument filters and one should also try to deal with non-
homogeneous data structures directly, e.g., by supporting different generator
functions than those introduced in Section 9.1. Finally, a more direct adaption
of the approach from [41] (cf. Section 9.10) might help to bypass expensive
techniques like equational unification.
See Chapter 12 for an extensive experimental evaluation of the induction tech-
nique.
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10

Deciding Constant Upper Bounds

So far, we have seen two techniques that allow us to infer lower bounds for
term rewriting. The inference of upper bounds for term rewriting has already
been widely studied. Nevertheless, this chapter introduces a novel technique to
deduce upper bounds for term rewrite systems. More precisely, we present a
semi-decision procedure to prove rccp(R)(n) ∈ O(1) resp. rccpi(R)(n) ∈ O(1) for
ordinary TRSs, i.e., for TRSs where all rules have cost 1. Hence, in this chapter
we prove that the question whether the runtime complexity of an ordinary TRS
is constant is semi-decidable. This complements our results from Section 8.3,
where we proved that the question whether the runtime complexity of a TRS
is at least linear is undecidable.
While one usually considers the ability to provide guarantees w.r.t. the resource
usage as the main motivation for the inference of upper complexity bounds,
constant bounds are also important for the detection of bugs. The reason is
that the runtime of non-trivial algorithms is usually not constant. Hence, if a
complexity analysis tool can infer a constant upper bound, then this is often
due to a programming error like, e.g., an unsatisfiable loop condition. Thus,
the technique presented in the current chapter can be used to detect such bugs
in term rewrite systems and hence, as discussed in Section 1.2, also in programs
operating on tree-shaped data.
In the following, we present semi-decision procedures for rccp(R)(n) ∈ O(1) and
rccpi(R)(n) ∈ O(1) in Sections 10.1 and 10.2. After discussing related work
in Section 10.3, we conclude in Section 10.4. See Chapter 12 for a detailed
experimental evaluation of the presented techniques.
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To implement a semi-decision procedure to prove rccp(R)(n) ∈ O(1), we exploit
the observation from Section 8.3 that the runtime complexity of a TRS R
is constant if and only if R terminates on basic terms, i.e., if all narrowing
sequences t0

σ1
R t1

σ2
R . . . where t0σ1 . . . σn is a basic term for each n ∈ N are

finite.1 From now on, we call such narrowing sequences constructor-based.2 The
following example illustrates how the correspondence between termination of
constructor-based narrowing and constant runtime can be used to infer constant
upper bounds.

Example 10.1 (Constant Upper Bounds vs. Termination of Narrowing).
The following TRS is a variation of SK90/4.51 from the Termination Prob-
lems Data Base where two rules which are not reachable from basic terms
were removed for the sake of clarity.

f(a)→ g(h(a)) h(g(x))→ g(h(f(x)))

Its defined symbols are f and h. Narrowing f(x) terminates after one step:

f(x) {x/a} g(h(a))

Similarly, narrowing f(a) terminates after one step. Let t /∈ V be a constructor
term. If t 6= a, then f(t) is a normal form w.r.t.  . For h(x), we get

h(x) {x/g(x′)} g(h(f(x′))) {x
′/a} g(h(g(h(a)))) id g(g(h(f(h(a))))).

Similarly, narrowing h(g(x)) or h(g(a)) terminates after three steps. If t 6= a,
then narrowing h(g(t)) terminates after a single step. Finally, if root(t) 6= g,
then h(t) is a normal from w.r.t.  . Since the cases considered above cover
all constructor-based narrowing sequences (up to variable renaming), this
proves that the runtime complexity of the TRS is constant.
In contrast, if we change the second rule to h(g(x))→ g(h(x)), then the run-
time complexity becomes linear and we obtain the non-terminating narrowing
sequence

h(x) {x/g(x′)} g(h(x′)) {x
′/g(x′′)} g(g(h(x′′))) {x

′′/g(x′′′)}
. . .

Unfortunately, the reasoning from Example 10.1 is hard to automate, since
we explicitly reasoned about all narrowing sequences starting with one out of
infinitely many basic terms. Thus, to enable automation, we exploit the fact

1More precisely, we proved that we have rccp(R)(n) ∈ Ω(n) if and only if there is such
an infinite narrowing sequence. However, this is equivalent to the statement above due to
Corollary 8.17.

2Note that our notion of constructor-based narrowing differs from basic narrowing [11,
89], where one is not allowed to narrow subterms which have been introduced by preceding
narrowing substitutions.
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that narrowing sequences can be “generalized” in such a way that termination
of constructor-based narrowing can be proven by just considering finitely many
start terms. Then a semi-decision procedure for termination of constructor-
based narrowing can be obtained by enumerating narrowing sequences with
increasing length.
However, in Section 8.3 we only stated the equivalence between constant runtime
and termination of constructor-based narrowing for a quite restricted class of
TRSs. Thus, to use this semi-decision procedure to prove constant upper bounds
for arbitrary ordinary TRSs, we need to generalize the ideas from Section 8.3.
We first introduce the generalization technique for narrowing sequences men-
tioned above and prove the equivalence between constant runtime and ter-
mination of constructor-based narrowing for ordinary TRSs afterwards. Our
generalization technique is based on the following partial ordering on narrowing
sequences, which clarifies which narrowing sequences are considered to be more
general than others in our setting.

Definition 10.2 (Ordering Narrowing Sequences). Let R be a TRS and let

t0
σ1
R t1

σ2
R . . .

σm

R tm and
p0

θ1
R p1

θ2
R . . .

θm

R pm

be narrowing sequences. We have t0
m
R tm � p0

m
R pm if there is a

substitution η such that tiσi+1 . . . σmη = piθi+1 . . . θm for all i ∈ {0, . . . ,m}.

In the following, we call substitutions σ such that rng(σ) ⊆ T (Σc(R),V) con-
structor substitutions. The next lemma is the foundation of our generalization
technique, as it shows that every constructor-based narrowing sequence is a
specialization (w.r.t. �) of a sequence starting with a basic term f(x1, . . . , xn)
where x1, . . . , xn are pairwise different variables. Thus, it allows us to reason
about termination of constructor-based narrowing by just considering sequences
stating with such basic terms. This is the foundation of our semi-decision pro-
cedure, as there are just finitely many such terms (up to variable renaming).

Lemma 10.3 (Generalizing Narrowing Sequences). Let R be a TRS, let
m ∈ N and let p0 ∈ Tbasic(R) with root(p0) = f such that p0

θ m
R pm is

constructor-based. Then we have f(x1, . . . , xk) = t0
σ m
R tm for pairwise

different variables x1, . . . , xk where t0 σ m
R tm � p0

θ m
R pm.

Proof. Note that θ|V(p0) is a constructor substitution, as the narrowing sequence
p0

θ m
R pm is constructor-based. We use induction on m to prove that

p0
θ1
R . . .

θm

R pm where (θ1 � . . . � θm)|V(p0) is a constructor substitution
implies f(x1, . . . , xk) = t0

σ1
R . . .

σm

R tm � p0
θ1
R . . .

θm

R pm
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Chapter 10. Deciding Constant Upper Bounds

where root(pi|τ ) ∈ Σd(R) implies root(ti|τ ) ∈ Σd(R) for each i ∈ {0, . . . ,m}
and each τ ∈ pos(pi). The case m = 0 is trivial.
In the induction step, we have

p0
θ1
R . . .

θm+1
R pm+1 where (θ1 � . . . � θm+1)|V(p0)

is a constructor substitution.

Note that we have p0θ1 . . . θm −→mR pm and hence V(pm) ⊆ V(p0θ1 . . . θm). Thus,
θm+1|V(pm) is a constructor substitution, too.
Let π and `→ r ∈ R be the position and rule used for the last narrowing step
pm

θm+1
R pm+1, i.e., we have θm+1 = mgu(`, pm|π). The induction hypothesis

implies
t0

σ1
R . . .

σm

R tm � p0
θ1
R . . .

θm

R pm

where root(pi|τ ) ∈ Σd(R) implies root(ti|τ ) ∈ Σd(R) for all i ∈ {0, . . . ,m}
and all τ ∈ pos(pi). Moreover, it implies that there is a substitution η such
that tiσi+1 . . . σmη = piθi+1 . . . θm for all i ∈ {0, . . . ,m}. Hence, there is a
substitution η such that

tmηθm+1 = pmθm+1 = pm[`]πθm+1. (10.1)

W.l.o.g.,
m⋃
i=0
V(tiσi+1 . . . σm),V(pm), and V(`) are disjoint. (10.2)

Since we have root(pm|π) = root(`) ∈ Σd(R) and thus also root(tm|π) ∈ Σd(R),
(10.1) and (10.2) imply that tm|π is a non-variable subterm of tm that unifies
with `. Let σm+1 = mgu(tm|π, `). Then we have

tm
σm+1

R tm[r]πσm+1 = tm+1. (10.3)

We now prove that

root(pm+1|τ ) ∈ Σd(R) implies root(tm+1|τ ) ∈ Σd(R).

If τ ∈ pos(pm[r]π), then we have

root(pm+1|τ ) ∈ Σd(R)
⇐⇒ root(pm[r]πθm+1|τ ) ∈ Σd(R) as pm+1 = pm[r]πθm+1
⇐⇒ root(pm[r]π|τ ) ∈ Σd(R) as τ ∈ pos(pm[r]π)
=⇒ root(tm[r]π|τ ) ∈ Σd(R) by the induction hypothesis
=⇒ root(tm[r]πσm+1|τ ) ∈ Σd(R)
⇐⇒ root(tm+1|τ ) ∈ Σd(R) as tm+1 = tm[r]πσm+1.

If τ /∈ pos(pm[r]π), then we have τ ≥ π, as θm+1|V(pm) is a constructor substitu-
tion. Thus, there are positions τr and τ ′ such that τ = π.τr.τ

′ and r|τr = x ∈ V.
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10.1. Constant Upper Bounds via Narrowing

Since V(r) ⊆ V(`), there is also a position τ` such that `|τ` = x. Thus, we get

root(pm+1|τ ) ∈ Σd(R)
⇐⇒ root(pm[r]πθm+1|τ ) ∈ Σd(R) as pm+1 = pm[r]πθm+1
⇐⇒ root(pm[r]πθm+1|π.τr.τ ′) ∈ Σd(R) as τ = π.τr.τ

′

⇐⇒ root(pm[`]πθm+1|π.τ`.τ ′) ∈ Σd(R) as r|τr = `|τ`
⇐⇒ root(pmθm+1|π.τ`.τ ′) ∈ Σd(R) as θm+1 = mgu(`, pm|π)
⇐⇒ root(pm|π.τ`.τ ′) ∈ Σd(R) as θm+1|V(pm) is a

constructor substitution
=⇒ root(tm|π.τ`.τ ′) ∈ Σd(R) by the induction hypothesis
=⇒ root(tmσm+1|π.τ`.τ ′) ∈ Σd(R)
⇐⇒ root(tm[`]πσm+1|π.τ`.τ ′) ∈ Σd(R) as σm+1 = mgu(`, tm|π)
⇐⇒ root(tm[r]πσm+1|π.τr.τ ′) ∈ Σd(R) as r|τr = `|τ`
⇐⇒ root(tm+1|π.τr.τ ′) ∈ Σd(R) as tm+1 = tm[r]πσm+1
⇐⇒ root(tm+1|τ ) ∈ Σd(R) as τ = π.τr.τ

′.

It remains to show that there is a substitution η′ such that

tiσi+1 . . . σm+1η
′ = piθi+1 . . . θm+1 for all i ∈ {0, . . . ,m+ 1}.

Since tm, pm, and ` are variable disjoint, (10.1) implies that

µ = (η � θm+1)|V\(V(pm)∪V(`)) ∪ θm+1|V(pm)∪V(`) (10.4)

is a unifier of tm, pm, and pm[`]π. Then µ is also a unifier of tm|π and `. Since
σm+1 = mgu(tm|π, `), there is a substitution η′ such that σm+1 � η′ = µ. Thus,
we get

tm+1η
′

= tm[r]πσm+1η
′ as tm+1 = tm[r]πσm+1

= tm[r]πµ as σm+1 � η′ = µ

= tmη[r]πθm+1 by (10.2) and (10.4) since V(r) ⊆ V(`)
= pm[r]πθm+1 as tmη = pm by the induction hypothesis
= pm+1 as pm+1 = pm[r]πθm+1.

For all i ∈ {0, . . . ,m} we have

tiσi+1 . . . σm+1η
′

= tiσi+1 . . . σmµ as σm+1 � η′ = µ

= tiσi+1 . . . σmηθm+1 by (10.2) and (10.4)
= piθi+1 . . . θmθm+1 as tiσi+1 . . . σmη = piθi+1 . . . θm

by the induction hypothesis.
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Example 10.4. Reconsider the narrowing sequences from Example 10.1.
Indeed, all mentioned narrowing sequence are specializations of (prefixes of)
the presented narrowing sequences starting with f(x) resp. h(x). For example,
we have:

h(x) {x/g(x′)} g(h(f(x′))) {x′/a} g(h(g(h(a)))) id g(g(h(f(h(a)))))99K {x/g(x′)}�{x′/a}

99K {x′/a}
99K id

99K id

h(g(a)) id g(h(f(a))) id g(h(g(h(a)))) id g(g(h(f(h(a)))))

The following theorem shows that constant runtime complexity is indeed equiva-
lent to termination of constructor-based narrowing for arbitrary ordinary TRSs.
Hence, it generalizes the corresponding result from Section 8.3, where we only
considered a more restricted class of TRSs.

Theorem 10.5 (Termination of Narrowing means Constant Upper Bound).
Let R be an ordinary TRS. We have rccp(R)(n) ∈ O(1) if and only if there
is no infinite constructor-based narrowing sequence.

Proof. For the “if” direction, assume rccp(R)(n) /∈ O(1). Then for each m ∈ N
there is a rewrite sequence of length m starting with a basic term f(. . .). Since
Σd(R) is finite, there exists an f ∈ Σd(R) such that there are rewrite sequences
s1 −→m1

R q1, s2 −→m2
R q2, . . . with m1 < m2 < . . . and root(s1) = root(s2) = . . . =

f where s1, s2, . . . are basic. By Lemma 10.3 this means that f(x1, . . . , xk) starts
narrowing sequences f(x1, . . . , xk) σ1 m1

R t1, f(x1, . . . , xk) σ2 m2
R t2, . . . where

f(x1, . . . , xk)σ1, f(x1, . . . , xk)σ2, . . . match s1, s2, . . . Note that Lemma 10.3 is
applicable as every rewrite sequence is also a valid narrowing sequence (where
the narrowing substitutions just instantiate variables in the applied rules,
but not in the narrowed terms). Hence, f(x1, . . . , xk)σ1, f(x1, . . . , xk)σ2, . . .

are basic. Thus, if we just consider constructor-based narrowing sequences
f(x1, . . . , xk) σ m

R t, the narrowing tree with the root f(x1, . . . , xk) still has
infinitely many nodes. Since R is finitely branching, by König’s Lemma the
tree has an infinite path, i.e., there is an infinite constructor-based narrowing
sequence starting with f(x1, . . . , xk).
For the “only if” direction, assume that there is an infinite constructor-based
narrowing sequence t0

σ1
R t1

σ2
R . . .. Then for each c ∈ N, we have

t0σ1 . . . σc+1 −→c+1
R tc+1. As t0σ1 . . . σc+1 is basic, this is a contradiction to

rccp(R)(‖t0σ1 . . . σc+1‖t) ≤ c and hence proves rccp(R)(n) /∈ O(1).

In combination with Lemma 10.3, Theorem 10.5 yields the main result of this
chapter: The question whether a TRS has a constant upper bound is semi-
decidable. The semi-decision procedure is presented in Algorithm 5.

Corollary 10.6 (Constant Upper Bounds are Semi-Decidable). Algorithm 5
is a semi-decision procedure for rccp(R)(n) ∈ O(1) for all ordinary TRSs R.
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10.1. Constant Upper Bounds via Narrowing

Algorithm 5 Semi-Decision Procedure for rccp(R)(n) ∈ O(1)

1. For each f ∈ Σd(R)

1.1. Set j := 0
1.2. Set j := j + 1
1.3. For each narrowing sequence f(x1, . . . , xk) θ j

R t

1.3.1. If f(x1, . . . , xk)θ is basic
1.3.1.1. Go to Step 1.2

2. Return rccp(R)(n) ∈ O(1)

Proof. By Theorem 10.5, we have rccp(R)(n) ∈ O(1) if and only if there is no
infinite constructor-based narrowing sequence. To prove that all such narrowing
sequences are finite, it suffices to prove that all constructor-based narrowing
sequences that start with terms of the form f(x1, . . . , xk) where f ∈ Σd(R) and
x1, . . . , xk are pairwise different variables are finite by Lemma 10.3.
Assume that there is an infinite constructor-based narrowing sequence

f(x1, . . . , xk) = t0
σ1
R t1

σ2
R . . . ,

i.e., rccp(R)(n) /∈ O(1). Then for each n ∈ N, there is a narrowing sequence of
length n such that the condition in Step 1.3.1 is satisfied and hence Step 1.3.1.1
is executed, i.e., Algorithm 5 does not terminate.
Now assume that there is no infinite constructor-based narrowing sequence,
i.e., rccp(R)(n) ∈ O(1). Let c be the length of the longest constructor-based
narrowing sequence f(x1, . . . , xk) = t0

σ1
R t1 . . .

σc

R tc. Then the outer
Loop 1 is executed |Σd(R)| times and in each iteration of the outer loop, the
inner loop (from Step 1.2 to Step 1.3.1.1) is executed at most c times. Thus,
Algorithm 5 terminates and returns rccp(R)(n) ∈ O(1).

The following example illustrates how to prove a constant upper bound for
Example 10.1 using our semi-decision procedure.

Example 10.7 (Constant Upper Bounds via Narrowing). Reconsider the
variation of SK90/4.51 from the Termination Problems Data Base from
Example 10.1. Until 2016, no tool proved that the runtime complexity of
SK90/4.51 is constant at a Termination and Complexity Competition [121].3
Since the Termination and Complexity Competition 2016, AProVE can prove
a constant upper bound via Algorithm 5. To do so, it suffices to construct
the narrowing sequences starting with f(x) and h(x) from Example 10.1.

3Note that, without the technique presented in the current chapter, the two leading
complexity analysis tools for term rewriting (AProVE and TCT) also fail to prove a constant
upper bound for our streamlined version of SK90/4.51.
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Chapter 10. Deciding Constant Upper Bounds

Clearly, Algorithm 5 is also sound for non-ordinary TRSs, i.e., for TRSs where
some rules have cost 0. However, for this class of TRSs, it is not a semi-decision
procedure anymore. To see this, consider the TRS {f 1−→ g, f 0−→ f}. Its runtime
complexity is constant, but it admits the non-terminating constructor-based
narrowing sequence f f . . .
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10.2 Constant Bounds for Innermost Rewriting

We now adapt the results from Section 10.1 to innermost rewriting. To this end,
we adapt Theorem 10.5 such that only narrowing sequences that correspond to
innermost rewrite sequences are taken into account.

Theorem 10.8 (Termination of Narrowing and Innermost Rewriting). Let
R be an ordinary TRS. We have rccpi(R)(n) ∈ O(1) if and only if there is no
infinite constructor-based narrowing sequence t0

σ1
R t1

σ2
R . . . such that

we have t0σ1 . . . σc −→i
c
R tc for each c ∈ N.

Proof. For the “if” direction, assume rccpi(R)(n) /∈ O(1). Then for each m ∈ N
there is an innermost rewrite sequence of length m starting with a basic term
f(. . .). Since Σd(R) is finite, there exists an f ∈ Σd(R) such that there are
rewrite sequences s1 −→i

m1
R q1, s2 −→i

m2
R q2, . . . with m1 < m2 < . . . and root(s1) =

root(s2) = . . . = f where s1, s2, . . . are basic. By Lemma 10.3 this means that
f(x1, . . . , xk) starts narrowing sequences

f(x1, . . . , xk) σ1 m1
R t1 � s1 −→i

m1
R q1, f(x1, . . . , xk) σ2 m2

R t2 � s2 −→i
m2
R q2, . . . .

Note that Lemma 10.3 is applicable as every rewrite sequence is also a valid
narrowing sequence (where the narrowing substitutions just instantiate variables
in the applied rules, but not in the narrowed terms). Then

f(x1, . . . , xk) σi mi
R ti � si −→i

mi
R qi

implies that f(x1, . . . , xk)σi is basic and that f(x1, . . . , xk)σi −→miR ti is an inner-
most rewrite sequence.4 Thus, if we just consider constructor-based narrowing
sequences f(x1, . . . , xk) σ m

R t such that f(x1, . . . , xk)σ −→
i

m
R t, the narrowing tree

with the root f(x1, . . . , xk) still has infinitely many nodes. Since R is finitely
branching, by König’s Lemma the tree has an infinite path, i.e., there is an
infinite constructor-based narrowing sequence starting with f(x1, . . . , xk).
For the “only if” direction, assume that there is an infinite narrowing sequence
t0

σ1
R t1

σ2
R . . . such that t0σ0 . . . σc is basic and t0σ1 . . . σc −→i

c
R tc for

each c ∈ N. This contradicts rccpi(R)(|t0σ1 . . . σc+1|) ≤ c and hence proves
rccpi(R)(n) /∈ O(1).

Example 10.9. Consider the TRS with the following rules:

a→ f(b) f(b)→ f(b) b→ c

Its full runtime complexity is not constant. To see this, it suffices to con-

4To see this, note that the narrowing sequences t0
σ m
R tm and p0

θ m
R pm narrow the

same positions in the same order according to the proof of Lemma 10.3.
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sider all constructor-based narrowing sequences starting with the terms a,
b, and f(x) as explained in Section 10.1. We have f(x) {x/b} f(b), but this
narrowing step is not constructor-based, as f(x){x/b} = f(b) is not a basic
term. Moreover, we have b id c where c is a normal form w.r.t.  . For
a, we obtain a id f(b) id f(c) and the non-terminating constructor-based
narrowing sequence a id f(b) id f(b) . . . However, since the corresponding
rewrite sequence a −→ f(b) −→ f(b) −→ . . . is not innermost (due to the inner
redex b in f(b)), we nevertheless get rccpi(R)(n) ∈ O(1) by Theorem 10.8.

Algorithm 6 Semi-Decision Procedure for rccpi(R)(n) ∈ O(1)

1. For each f ∈ Σd(R)

1.1. Set j := 0
1.2. Set j := j + 1
1.3. For each narrowing sequence f(x1, . . . , xk) θ j

R t

1.3.1. If f(x1, . . . , xk)θ is basic and f(x1, . . . , xk)θ −→
i

j
R t

1.3.1.1. Go to Step 1.2

2. Return rccpi(R)(n) ∈ O(1)

Thus, as for full rewriting, we obtain a semi-decision procedure to prove
rccpi(R)(n) ∈ O(1). The adaption of Algorithm 5 for innermost rewriting
is presented in Algorithm 6.

Corollary 10.10 (Innermost Constant Upper Bounds are Semi-Decidable).
Algorithm 6 is a semi-decision procedure for rccpi(R)(n) ∈ O(1) for all ordi-
nary TRSs R.

Proof. The proof is analogous to the proof of Corollary 10.6.
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10.3 Related Work

There exists numerous techniques to prove upper bounds on the complexity of
term rewrite systems [15, 79, 86, 87, 105, 125, 131]. The spectrum includes
adaptions of the Dependency Pair Framework [66] from termination analysis
of term rewriting [15, 79, 105], automata-based techniques [125], techniques
based on relative rewriting [131], and adaptions of the potential method [120]
for term rewriting [86, 87]. While some of these approaches use narrowing as an
auxiliary technique to perform case analyses, we use narrowing as a standalone
complexity analysis technique. Moreover, all of the techniques mentioned above
are incomplete, whereas our technique is a semi-decision procedure for its
specific use case. Finally, none of these techniques focuses on the inference of
constant upper bounds.
In contrast, the tool Oops [42] is specifically designed for the inference of constant
bounds, just like our technique. It checks whether the runtime complexity of a
given TRS is constant for one of the following reasons:

• There are only finitely many basic terms, as all constructors or all defined
symbols are constants. If all rewrite sequences starting with one of these
terms are finite, then the runtime complexity of the TRS is constant. This
can be tested by evaluating each basic term in all possible ways.

• There is no rule whose left-hand side is basic. Thus, no rule can be applied
to any basic term.

Clearly, our technique succeeds in both scenarios and hence subsumes Oops.
A property which is closely related to constant runtime complexity is the finite
variant property, which is, e.g., of interest in the context of equational unification.
For example, [22, Section 9] states that finite runtime complexity implies IR-
boundedness, which in turn implies the finite variant property. Thus, complexity
analysis techniques such as the one presented in this chapter can be used to
prove that a TRS has the finite variant property.
In [89], it is proven that termination of basic narrowing follows if the considered
TRS is terminating and confluent and there is no infinite basic narrowing
sequence starting with a right-hand side of a rule. The paper [11] generalizes
this result by removing the superfluous preconditions that the TRS needs to be
terminating and confluent. While these results are related to our semi-decision
procedure for constructor-based narrowing, the respective restrictions of the
narrowing relation differ. We disallow narrowing sequences s σ ∗

R t where sσ
is not basic, whereas basic narrowing disallows narrowing steps that reduce
subterms which have been introduced by preceding narrowing substitutions.
Thus, basic narrowing does not terminate for the TRS R with the rules

f(a)→ f(a) a→ b
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due to the infinite basic narrowing sequence f(a) R f(a) R . . . In contrast,
all constructor-based narrowing sequences w.r.t. R have at most length 1.
However, termination of basic and constructor-based narrowing coincides for
left-linear constructor systems. To see this, recall that it suffices to consider
sequences starting with right-hand sides of rules to prove termination of basic
narrowing [11, 89]. Instead, one can also consider all sequences starting with
basic terms of the form f(x) for pairwise different variables x (which narrow
to the right-hand sides of the TRS in one step). Note that for left-linear
constructor systems, all narrowing sequences starting with basic terms are basic,
as narrowing substitutions cannot introduce defined symbols for such TRSs.
For the same reason, all narrowing sequences starting with basic terms are
constructor based for such TRSs. Thus, the resulting semi-decision procedure
for termination of basic narrowing w.r.t. constructor systems coincides with the
semi-decision procedure for termination of constructor-based narrowing from
Section 10.1.
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10.4 Conclusion and Future Work

We presented a semi-decision procedure to prove rccp(R)(n) ∈ O(1) for arbitrary
ordinary TRSs (Section 10.1). The semi-decision procedure builds upon the
observation that constant runtime complexity is equivalent to termination of
a restricted form of narrowing (which we call constructor-based narrowing).
Moreover, it exploits the fact that narrowing sequences can be “generalized”
in such a way that termination of constructor-based narrowing can be proven
by just considering finitely many start terms. Thus, a semi-decision procedure
for termination of constructor-based narrowing (and hence for the inference of
constant upper bounds) can be obtained by enumerating narrowing sequences
with increasing length.
The resulting technique is able to prove constant upper bounds for TRSs where
state-of-the-art complexity analysis tools failed to prove rccp(R)(n) ∈ O(1) so
far, cf. Example 10.7. See Chapter 12 for a detailed experimental evaluation.
To increase the applicability of our technique to real-world programs (where
one is often only interested in program runs with an eager evaluation strategy),
we also adapted our technique to innermost rewriting, cf. Section 10.2.
Besides providing guarantees w.r.t. the resource consumption of programs,
our technique can also be used to detect bugs. The reason is that constant
runtime complexity often results from programming errors like unsatisfiable
loop conditions.
In future work, one should consider applications of our technique in the context
of equational unification, cf. Section 10.3.
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11

Strategy Switching – From Full to Innermost
Rewriting and Vice Versa

All complexity analysis techniques for TRSs that have been presented in this
thesis so far apply to innermost as well as full rewriting. However, there
are also many techniques which are specific to innermost rewriting [13, 14,
105]. In particular, the results of the annual Termination and Complexity
Competition [121] show that automatic techniques to infer upper bounds for
full rewriting are still substantially weaker than corresponding techniques for
innermost rewriting. At the Termination and Complexity Competitions 2015
and 2016,1 899 examples were analyzed for both full and innermost runtime
complexity.2 For 235 of them, super-polynomial lower bounds were inferred for
full rewriting. Hence, no upper bounds can be obtained for these examples
since the participating tools only compute polynomial upper bounds. For the
remaining 664 examples, a polynomial upper bound on the innermost runtime
complexity was proven for 357 TRSs (53.8%) by at least one tool at one of
the competitions. In contrast, a polynomial upper bound on the full runtime
complexity was inferred for just 218 examples (32.8%).3

These numbers indicate that current techniques for complexity analysis of TRSs
are much better in analyzing innermost than full runtime complexity, or that
innermost runtime complexity is significantly easier to handle than full runtime
complexity. In both cases, it is worthwhile to identify (decidable) classes of

1Note that the results of the Termination and Complexity Competition 2017 were un-
available at the time of writing (even on request). Thus, the following numbers are based on
the results of earlier competitions, whose results have been backed up by the author of this
thesis, cf. https://aprove-developers.github.io/termcomp_results.

2We consider examples as equal if they have the same name. Note that the results of the
Termination and Complexity Competitions 2015 and 2016 are orthogonal. On the one hand,
the participating tools improved from 2015 to 2016, but on the other hand, the timeout per
example was reduced from 300 s in 2015 to just 30 s in 2016. Hence, in the numbers above,
we consider the best results of both competitions to represent the state of the art.

3Here, we ignore upper bounds on the full runtime complexity proven by our tool AProVE
[62] in 2016. The reason is that at the Termination and Complexity Competition 2016,
AProVE used a preliminary version of the new technique presented in the current chapter and
we want to compare with the state of the art before the introduction of this technique. Before
2016, AProVE was not able to infer any upper bounds on the complexity of full rewriting.
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TRSs where full and innermost runtime complexity coincide. In this chapter, we
provide a criterion to prove that full and innermost runtime complexity coincide
which is easy to automate. It builds upon an important result from [124] that a
relaxation of innermost rewriting called non-dup generalized innermost rewriting
(“ndg rewriting”) does not yield longer evaluation sequences than innermost
rewriting itself. Our main contribution is a criterion to automatically identify
classes of TRSs where all rewrite sequences starting with basic terms are ndg,
which then implies that full and innermost runtime complexity coincide. Thus,
our criterion allows us to switch between the rewrite strategies “full rewriting”
and “innermost rewriting” during the analysis of a TRS.
Consequently, our strategy switching technique allow us to apply all existing and
all future approaches specific to innermost rewriting to analyze full rewriting
directly, which is particularly interesting for the inference of upper bounds. For
the inference of lower bounds, our technique often allows us to use the unre-
stricted versions of loop detection (cf. Chapter 8) and the induction technique
(cf. Chapter 8) for full rewriting even if we are interested in innermost runtime
complexity. In other words, whenever the technique presented in the current
chapter succeeds, then the additional restrictions for innermost rewriting from
Section 8.4 and Section 9.8 are not required anymore.
However, in contrast to existing techniques for the inference of upper bounds,
loop detection and the induction technique hardly benefit from strategy switch-
ing (cf. Chapter 12). Hence, in the context of program analysis strategy switch-
ing is especially interesting for the inference of upper bounds on the complexity
of programs which are evaluated with a non-eager strategy, cf. Section 1.2.
In Section 11.1, we recall “ndg rewriting” and show that it is undecidable
whether all rewrite sequences of a TRS are ndg. Hence, we develop a sufficient
criterion for this property in Section 11.2 which is easy to check automatically.
We implemented our contributions in the tool AProVE [62], resulting in a
significant improvement of the state of the art in the automated analysis of
full runtime complexity. See Chapter 12 for a detailed experimental evaluation.
Finally, we discuss related work in Section 11.3 and conclude in Section 11.4.
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11.1 Non-Dup Generalized Innermost Rewriting

In this section, we recall the definition of ndg rewriting from [124]. The idea of
“ndg” is that variables occurring multiple times in right-hand sides of rules may
only be instantiated by normal forms (we call such rewrite steps spare). So the
main difference to full rewriting is that ndg rewriting does not allow rewrite
steps that duplicate redexes. Moreover, proper subterms of left-hand sides with
defined root may only be instantiated to normal forms. In Section 11.2, we
show how to automatically prove that every rewrite sequence starting with a
basic term is ndg.

Definition 11.1 (Spare and ndg Rewriting [124]). Let R be a TRS with
` → r ∈ R such that s −→`→r,π t where σ is the matcher with `σ = s|π.
The rewrite step s −→`→r,π t is spare if xσ is a normal form for all variables
x with #x(r) > 1. It is non-dup generalized innermost (ndg), denoted
s −−→

ndg `→r,π t, if it is spare and `|τσ is a normal form for all τ ∈ pos(`) \ {ε}
with root(`|τ ) ∈ Σd(R). R is spare resp. ndg if every −→R-sequence starting
with a basic term only consists of spare resp. ndg rewrite steps.

Example 11.2. For Rfib from Example 7.10, the rewrite step

add(succ(x), add(zero, z)) −→Rfib
add(x, succ(add(zero, z)))

is ndg, but it is not innermost due to the redex add(zero, z). In contrast,

fib(succ(succ(add(zero, z)))) −→Rfib
add(fib(succ(add(zero, z))), fib(add(zero, z)))

is neither ndg nor spare, as the redex add(zero, z) is duplicated.

Corollary 11.3 states two straightforward observations: innermost rewrite steps
are ndg, since an innermost redex has no redexes as proper subterms. Moreover,
spareness and ndg are the same for so-called overlay systems, where no proper
non-variable subterm of a left-hand side unifies with a redex.

Corollary 11.3 (Innermost Rewriting, Spareness, and ndg).

(a) Every innermost rewrite step is ndg, i.e., −→
i R ⊆ −−→ndg R.

(b) Every spare overlay system is ndg.

The following examples show that, in general, full and innermost runtime com-
plexity do not coincide if R is not ndg.
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Chapter 11. Strategy Switching

Example 11.4. Consider the TRS Rnn with the rules

c→ f(a) f(a)→ f(a) a→ b.

It is spare, but not ndg due to the rewrite sequence

c −→Rnn
f(a) −→Rnn

f(a) −→Rnn
. . .

where the subterm a below the root of the left-hand side is not in normal
form. Thus, we have rccp(Rnn)(n) ∈ Θ(ω). However, the innermost runtime
complexity of Rnn is clearly constant.
Now consider the following TRS Rns:

f(zero, y)→ y g(x)→ f(x, a) f(succ(x), y)→ f(x, node(y, y)) a→ b

It is not spare, because the sequence

g(succn(zero)) −→Rns
f(succn(zero), a) −→Rns

f(succn−1(zero), node(a, a)) −→Rns
. . .

duplicates redexes. Here, we have rccpi(Rns)(n) ∈ Θ(n), but the full runtime
complexity of Rns is exponential.
The next TRS Rnl is a non-left-linear, but non-duplicating overlay system.
It shows why for spareness it is not enough if xσ is a normal form whenever
#x(`) < #x(r) (i.e., if x is duplicated):

g(zero, succ(zero))→ f(h, h) f(x, x)→ g(x, x) h→ zero h→ succ(zero)

We have rccp(Rnl)(n) ∈ Θ(ω) due to the non-terminating rewrite sequence

g(zero, succ(zero)) −→Rnl
f(h, h) −→Rnl

g(h, h) −→2
Rnl

g(zero, succ(zero)) −→Rnl
. . .

However, rccpi(Rnl)(n) ∈ Θ(1) holds, as we have, e.g.,

g(zero, succ(zero)) −→
i Rnl

f(h, h) −→
i

2
Rnl

f(zero, zero) −→
i Rnl

g(zero, zero).

All other −→
i Rnl

-sequences that start with basic terms have at most length 4,
too. Note that if spareness only required xσ to be a normal form for variables
x that are duplicated, then this TRS would trivially be spare although
rccp(Rnl) 6= rccpi(Rnl). But with our definition of spareness the TRS is not
spare, since the variable x which occurs twice in the right-hand side g(x, x)
is instantiated by the redex h in the above reduction.

Our technique relies on the following important result of [124].

Theorem 11.5 (Length of ndg Rewriting [124, Lemma 8]). If s −−→
ndg

n
R t, then

s −→
i

n
R u for some term u.
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11.1. NDG Rewriting

Corollary 11.6 follows from Theorem 11.5, because if R is ndg, then s −→nR t

implies s −−→
ndg

n
R t for basic terms s.

Corollary 11.6 (rccp(R) = rccpi(R)). Let R be an ordinary TRS which is
ndg. Then rccp(R) = rccpi(R).

Thus, we obtain the following processors.

Corollary 11.7 (Strategy Switching). Let R be an ordinary TRS which is
ndg. Then the processor mapping cp(R) to cpi(R) is sound for lower and
upper bounds. Similarly, the processor mapping cpi(R) to cp(R) is sound
for lower and upper bounds.

According to Corollary 11.6, innermost and full runtime complexity coincide
for ordinary TRSs that are ndg. The following example shows why this result
does not carry over to arbitrary TRSs.

Example 11.8. Consider the TRS R consisting of the rules

α1 = f(x) 1−→ f(a) and α2 = a 0−→ a.

It is clearly ndg and its full runtime complexity is unbounded due to the
rewrite sequence f(x) 1−→α1

f(a) 1−→α1
f(a) 1−→α1

. . . However, its innermost
runtime complexity is constant, as we have f(x) 1−→

i α1
f(a) 0−→

i α2
f(a) 0−→

i α2
. . .

Hence, from now on we restrict ourselves to ordinary TRSs. Unfortunately, the
question whether a TRS is spare resp. ndg is undecidable.

Theorem 11.9 (Spareness is Undecidable). It is undecidable whether a TRS
is spare (resp. ndg).

Proof. Recall that a TRS R is basic if `, r ∈ Tbasic(R) for all `→ r ∈ R. The
proof relies on an encoding of Turing machines to left-linear basic TRSs where
each configuration of the Turing machine is represented by a ground term (i.e.,
it relies on the Turing completeness of left-linear basic TRSs).
For any Turing machine (cf. Definition 7.14)M = (Q,Γ, δ), we define the TRS
RM by adapting the encoding from Section 8.3. In contrast to Section 8.3, we
now only consider configurations with finitely many non-blank symbols on the
tape. The reason is that we want to reduce the halting problem for Turing
machines to spareness of TRSs and the halting problem only considers such
configurations. Again, in RM there is a function symbol f of arity 4, all symbols
from Γ become function symbols of arity 1, and Q ∪ {a | a ∈ Γ} are constants.

221



Chapter 11. Strategy Switching

Then RM is defined as follows:

RM = {f(q1, a2(xs), a1, ys)→ f(q2, xs, a2, b(ys)) | a2 ∈ Γ, δ(q1, a1) = (q2, b, L)}
∪ {f(q1, xs, a1, a2(ys))→ f(q2, b(xs), a2, ys) | a2 ∈ Γ, δ(q1, a1) = (q2, b, R)}
∪ {f(q1,�, a1, ys)→ f(q2,�,�, b(ys)) | δ(q1, a1) = (q2, b, L)}
∪ {f(q1, xs, a1,�)→ f(q2, b(xs),�,�) | δ(q1, a1) = (q2, b, R)}

Obviously, RM is basic and left-linear. A configuration (q, w, a, w′) of the
Turing machine can now be encoded as the ground term

(q, w, a, w′)T = f(q, wT , a, w′T )

where vT = � if v = �ω (i.e., if v is the infinite word consisting only of �)
and otherwise, vT = a(v′T ) where v = a.v′. Now we can prove that RM indeed
simulates the Turing machine M. More precisely, we prove that we have

(q1, w1, a1, w
′
1) −→M (q2, w2, a2, w

′
2)

if and only if
(q1, w1, a1, w

′
1)T −→RM (q2, w2, a2, w

′
2)T .

(11.1)

In the following, we write f1f2 . . . fnc for terms of the form f1(f2(. . . fn(c) . . .))
to ease readability. For the “only if” direction of (11.1), we just regard the
case δ(q1, a1) = (q2, b, L). The case δ(q1, a1) = (q2, b, R) is analogous. Hence,
w1 = a2.w2 and w′2 = b.w′1. Let w2 = b1.b2 . . . bn.�ω and w′1 = c1.c2 . . . cm.�ω.
Note that w2 and w′1 have to be of this form, as we just consider configuration
with finitely many non-blank symbols.
First consider the case w1 6= �ω. Then we have

(q1, w1, a1, w
′
1)T = f(q1, a2b1b2 . . . bn�, a1, (w′1)T ).

By definition, f(q1, a2(xs), a1, ys)→ f(q2, xs, a2, b(ys)) ∈ RM. Hence, we get

(q1, w1, a1, w
′
1)T = f(q1, a2b1b2 . . . bn�, a1, (w′1)T )

−→RM f(q2, b1b2 . . . bn�, a2, b(w′1)T )
= (q2, w2, a2, w

′
2)T .

Now consider the case w1 = �ω. Thus,

(q1, w1, a1, w
′
1)T = f(q1,�, a1, (w′1)T ).

By definition, f(q1,�, a1, ys)→ f(q2,�,�, b(ys)) ∈ RM. Note that w1 = a2.w2
implies a2 = � and w2 = �ω. Hence,

(q1, w1, a1, w
′
1)T = f(q1,�, a1, (w′1)T )

−→RM f(q2,�,�, b(w′1)T )
= (q2, w2, a2, w

′
2)T .
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11.1. NDG Rewriting

For the “if” direction of (11.1), first consider the case that a rule

f(q1, a2(xs), a1, ys)→ f(q2, xs, a2, b(ys))

is applied to rewrite (q1, w1, a1, w
′
1)T to (q2, w2, a2, w

′
2)T . The case that a rule of

the form f(q1, xs, a1, a2(ys))→ f(q2, b(xs), a2, ys) is applied is analogous. Then
we get w1 = a2.w2 and w′2 = b.w′1. Moreover, we have δ(q1, a1) = (q2, b, L) by
the definition of RM. Hence, we get

(q1, w1, a1, w
′
1) = (q1, a2.w2, a1, w

′
1)

−→M (q2, w2, a2, b.w
′
1)

= (q2, w2, a2, w
′
2).

Now consider the case that a rule

f(q1,�, a1, ys)→ f(q2,�,�, b(ys))

is applied to rewrite (q1, w1, a1, w
′
1)T to (q2, w2, a2, w

′
2)T . The case that a rule

of the form f(q1, xs, a1,�)→ f(q2, b(xs),�,�) is applied is analogous. Then we
get w1 = w2 = �ω, a2 = �, and w′2 = b.w′1. Moreover, δ(q1, a1) = (q2, b, L) by
the definition of RM. Hence,

(q1, w1, a1, w
′
1) = (q1,�ω, a1, w

′
1)

−→M (q2,�ω,�, b.w′1)
= (q2, w2, a2, w

′
2),

which finishes the proof of (11.1).
By (11.1), undecidability of the halting problem for Turing machines implies
undecidability of normalization of basic ground terms w.r.t. left-linear basic
TRSs like RM, as (q, w, a, w′)T is a basic ground term. The reason is that for
any Turing machine M, we have:

M halts on the start configuration (q, w, a, w′)
⇐⇒ RM is terminating on (q, w, a, w′)T by (11.1)
⇐⇒ RM is normalizing on (q, w, a, w′)T

For the last step, note that termination and normalization of RM on basic
ground terms are equivalent as RM is basic and non-overlapping.
Now we can prove that spareness of TRSs is undecidable. To this end, let R
be a left-linear basic TRS over the signature Σ. As R is basic, every rewrite
sequence that starts with a basic term only leads to basic terms. Hence, R is
spare.
Given a basic ground term f(t1, . . . , tk) ∈ Tbasic(R), we define a constructor
system R′ over the signature Σ′ = Σ]{a, c, g, h, inf} such that normalization of
f(t1, . . . , tk) w.r.t. R can be checked by checking spareness of R′ instead. Since
we have shown that normalization of basic ground terms w.r.t. left-linear basic
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Chapter 11. Strategy Switching

TRSs is undecidable, in this way one can prove that spareness is also undecidable.
As a constructor system is spare if and only if it is ndg by Corollary 11.3 (b),
this also shows that it is undecidable whether a TRS is ndg.
The construction of R′ works as follows: All rules of R are also included in R′.
Moreover, for each defined function symbol e ∈ Σd(R), we add rules e(. . .)→ a
to R′ such that for any p1, . . . , pm ∈ T (Σc(R)), e(p1, . . . , pm) can be reduced
to a if and only if e(p1, . . . , pm) is in −→R-normal form. Note that this is easily
possible, as R is a left-linear constructor system and we only consider basic
ground terms e(p1, . . . , pm). So the new rules e(. . .) → a need to cover all
constructor ground terms that are not matched by the left-hand sides of the
other e-rules of R. Furthermore, we add the rules g → h(inf, f(t1, . . . , tk)),
h(x, a) → c(x, x), and inf → inf. By construction, R′ is not spare if and only
if f(t1, . . . , tk) is normalizing w.r.t. R. To see this, recall that spareness of R′
means that all rewrite sequences starting with basic terms are spare. Clearly,
only rules from R are applicable to basic terms whose root is from Σd(R) and
thus, all these rewrite sequences are spare. Hence, we now consider all basic
terms with root g, h, or inf.

• For the basic term g we have g −−→
ndg R′ h(inf, f(t1, . . . , tk)). If f(t1, . . . , tk) is

not normalizing, then by construction, we can never evaluate h and hence
the resulting rewrite sequence is spare. If f(t1, . . . , tk) is normalizing, then
let t be a normal form of f(t1, . . . , tk). Note that as R is a basic TRS, t
is also a basic term. Hence, we get

h(inf, f(t1, . . . , tk)) −−→
ndg
∗
R′ h(inf, t) −−→

ndg R′ h(inf, a) −→R′ c(inf, inf).

Note that the last step is not spare.

• Each basic term of the form h(s, s′) is either a normal form (if s′ 6= a) or
just enables the spare rewrite step h(s, a) −−→

ndg R′ c(s, s).

• The only reduction starting with inf is inf −−→
ndg R′ inf −−→

ndg R′ . . .

Hence, a semi-decision procedure for spareness yields a semi-decision procedure
for non-normalization of arbitrary basic ground terms for basic left-linear TRSs.

On the other hand, the question whether a TRS is not spare resp. not ndg
is semi-decidable. A semi-decision procedure is obtained by enumerating all
rewrite sequences starting with basic terms and checking whether these se-
quences contain non-spare resp. non-ndg steps. In fact, spareness and ndg
are even undecidable for left-linear constructor systems (which correspond to
first-order functional programs), as the TRS R′ constructed in the proof of The-
orem 11.9 is a left-linear constructor system. However, there are some obvious
sufficient syntactic criteria for spareness.
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Lemma 11.10 (Right-Linear TRSs are Spare). Every right-linear TRS is
spare. Hence, every right-linear overlay system is ndg.

Proof. Immediate consequence of Definition 11.1 and Corollary 11.3 (b).

Lemma 11.11 (TRSs Without Nested Defined Symbols in Right-Hand Sides
are ndg). If there is no rule ` → r ∈ R with root(r|π), root(r|π.τ ) ∈ Σd(R)
where π, π.τ ∈ pos(r) and τ 6= ε, then R is ndg.

Proof. Let t0 −→R t1 −→R . . . be a rewrite sequence where t0 is basic. As there
is no rule where defined symbols are nested on the right-hand side, defined
symbols are not nested in any ti, i ∈ N. Hence, t0 → t1 −→R . . . is an innermost
and thus ndg rewrite sequence by Corollary 11.3 (a).

Thus, the processors from Corollary 11.7 are applicable to right-linear overlay
systems as well as TRSs without nested defined symbols in right-hand sides.
We will present a much more powerful sufficient criterion for spareness in Sec-
tion 11.2 which is still easy to automate. For spareness, this criterion subsumes
Lemma 11.10 and Lemma 11.11. According to Corollary 11.3 (b), it can be used
to prove that overlay systems are ndg. Hence, for checking ndg, the criterion
of Section 11.2 subsumes Lemma 11.10.
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11.2 Approximating Spareness

According to Corollary 11.6, innermost and full runtime complexity coincide for
ndg TRSs. We presented two simple syntactic sufficient criteria which ensure
that a TRS is ndg in Lemma 11.10 and Lemma 11.11, but these criteria are still
far too restrictive. Hence, we now introduce a much more powerful technique
which allows us to prove spareness in many cases. So for overlay systems, due
to Corollary 11.3 (b) this technique can be used to prove ndg-ness.
The idea of our technique is to over-approximate all non-innermost redexes
which are reachable from basic terms by a finite set of contexts Def where
the inner redex is below �. Similarly, for all rules ` → r with #x(r) > 1 we
over-approximate the redexes `σ which are reachable from basic terms by a
finite set of contexts Dup where � stands for the “duplicated” subterm xσ.
Then, we check if there are contexts in Def and Dup that “overlap”. If this is
not the case, then the analyzed TRS is spare.
To formalize the notions of “overlap” and “over-approximation” we introduce
an instance relation on contexts. Then, two contexts overlap if they have a
common instance and a context D over-approximates all contexts that are
instances of D. The intuition behind the instance relation is that D is “more
general” than C if C results from D by instantiating variables and replacing �
by a term containing �. Then, we can use a context D to represent all terms
C[t] where C is an instance of D and t has a certain property (like “may be
duplicated” or “may contain redexes”).

Definition 11.12 (Instance v). Given two contexts C[�]π, D[�]τ we call
C an instance of D (C v D) if π ≥ τ and D[x] matches C, where x is a fresh
variable.

In other words, C v D holds if and only if there is a contextC ′ and a substitution
σ with C = Dσ[C ′].

Example 11.13. The context add(succ(�), succ(y)) is an instance of the
context add(�, y), as we have 1.1 ≥ 1 (where 1.1 and 1 are the positions of
� in add(succ(�), succ(y)) and add(�, y), respectively) and add(�, y)[x] =
add(x, y) matches add(succ(�), succ(y)).

The following corollary states some useful observations on the instance relation.

Corollary 11.14 (Properties of v).

(a) v is transitive, i.e., C v D and D v E implies C v E

(b) for any context C and any substitution σ we have Cσ v C

(c) π, τ ∈ pos(t) and π ≥ τ implies t[�]π v t[�]τ for any term t

226



11.2. Approximating Spareness

Two contexts C and D overlap if they have a common instance. In other words,
C and D overlap if there exist terms that are represented both by C and by D.

Definition 11.15 (Overlapping Contexts). Given two contexts C,D we say
that C and D overlap if there is a context E such that E v C and E v D.

Example 11.16. The contexts add(�, succ(y)) and add(succ(�), y) overlap,
as add(succ(�), succ(y)) is an instance of both of them.

Note that for any two contexts C and D, it is decidable whether they overlap:
One has to check whether the positions of � in C and D are not independent
and whether C[x] and a variable-renamed version of D[y] unify.
A context is duplicating if it results from a rule `→ r where a variable x occurs
more than once in r and if `σ appears in a rewrite sequence that starts with a
basic term. To turn `σ into a context, one replaces a subterm of xσ by �.

Definition 11.17 (Duplicating Context). Given a TRS R, we call a context
C duplicating if there is a term s ∈ Tbasic(R), a substitution σ, and a rewrite
sequence s −→∗R t D `σ where ` is the left-hand side of a rule `→ r ∈ R such
that `|π = x ∈ V, #x(r) > 1, and C = `σ[�]π.τ for some π.τ ∈ pos(`σ).

Example 11.18. Reconsider the TRS Rfib from Example 7.10. Rule β4 is
the only rule where a variable occurs more than once on the right-hand side.
Its left-hand side is fib(succ(succ(x))). If one starts rewriting with a basic
term, one can only reach instantiations of the form fib(succ(succ(t))) with
t ∈ T (Σc(Rfib),V). As the variable x of the left-hand side is duplicated,
the duplicating contexts of Rfib are fib(succn(�)) where t ∈ T (Σc(Rfib),V)
and n ≥ 2. So in other words, spareness of Rfib can only be violated if a
basic term can be rewritten to a term containing an instance of fib(succn(�)),
where � is replaced by a term that is not a normal form.

As the following theorem shows, it is undecidable if a context is duplicating.

Theorem 11.19. It is undecidable if a context is duplicating.

Proof. Let R be a left-linear basic TRS. We adapt the construction from the
proof of Theorem 11.9 by introducing an additional argument for h and by
modifying the g- and h-rules to

g→ h(inf, inf, f(t1, . . . , tk)) h(x, y, a)→ c(x, x)

Then the context h(�, inf, a) is duplicating w.r.t. R′ if and only if f(t1, . . . , tk)
is normalizing w.r.t. R. To see this, we consider all rewrite sequences starting
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with basic terms. Clearly, there is no term q such that h(�, inf, a)[q] is reachable
from a basic term whose root is from Σ. Hence, we now regard all basic terms
with root g, h, or inf.

• For the basic term g we have g −→R′ h(inf, inf, f(t1, . . . , tk)). If f(t1, . . . , tk)
is not normalizing, then by construction, the rewrite sequence can never
reach a term containing h(�, inf, a)[q] for any term q. If f(t1, . . . , tk) is
normalizing, then let t be a normal form of f(t1, . . . , tk). Since R is a
basic TRS, t is again a basic term. Hence, we get

h(inf, inf, f(t1, . . . , tk)) −→∗R′ h(inf, inf, t) −→∗R′ h(inf, inf, a) = h(�, inf, a)[inf],

i.e., h(�, inf, a) is duplicating.

• Each basic term of the form h(s, s′, s′′), is either a normal form (if s′′ 6= a)
or just enables the rewrite step h(s, s′, a) −→R′ c(s, s). Hence, h(�, s′, a)
is duplicating. However, as h(s, s′, a) is basic, we have s′ 6= inf (i.e., this
does not mean that h(�, inf, a) is duplicating). Since s does not contain
defined symbols, c(s, s) is a normal form, i.e., no further terms with root
h are reachable from h(s, s′, a).

• The only reduction starting with inf is inf −→R′ inf −→R′ . . .

Hence, h(�, inf, a) is duplicating if and only if f(t1, . . . , tk) is normalizing. Since
normalization of basic ground terms w.r.t. left-linear basic TRSs is undecidable
(cf. the proof of Theorem 11.9), this implies that it is also undecidable whether
a context is duplicating.

Hence, whether a context is duplicating is even undecidable for left-linear con-
structor systems (as R′ in the proof above is such a system). However, the
duplicating contexts of a TRS can easily be over-approximated by a finite set of
contexts Dup such that every duplicating context is an instance of an element of
Dup. In this approximation, we do not take the requirement into account that
a duplicating context must be reachable by a rewrite sequence that starts with
a basic term. Moreover, we disregard possible instantiations of left-hand sides
and only consider contexts where � is at the position of a duplicated variable.

Definition 11.20 (DupR). Given a TRS R, we define

DupR = {C | C[x]→ r ∈ R,#x(r) > 1}.

We omit the index R if it is clear from the context.
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Example 11.21. We have DupRfib
= {fib(succ(succ(�)))}, as

fib(succ(succ(x)))→ add(fib(succ(x)), fib(x))

is Rfib’s only rule with a non-linear right-hand side and 1.1.1 is the only
position of x on the left-hand side. Note that all duplicating contexts
fib(succn(�)), n ≥ 2, are instances of fib(succ(succ(�))).

Dup indeed over-approximates all duplicating contexts.

Lemma 11.22 (Dup Over-Approximates Duplicating Contexts). If C is
duplicating, then there is a D ∈ Dup such that C v D.

Proof. If C is duplicating, then there is a rule `→ r ∈ R and a rewrite sequence
s −→∗R t D `σ = C[p]π.τ where `|π = x is a variable that occurs more than once
on the right-hand side. Then we have `[�]π ∈ Dup and C v `[�]π. To see
this, note that `[x]π = ` matches C[p]π.τ = `σ. So if x′ is a fresh variable, then
`[x′]π also matches C[�]π.τ = C. Moreover, we have π.τ ≥ π.

Defined contexts characterize contexts with defined root that can be reached
by rewriting basic terms, where a redex may occur at the position of �.

Definition 11.23 (Defined Context). Given a TRS R, we call a context C
defined if there is a term s ∈ Tbasic(R) and a rewrite sequence s −→∗R t D C[p]
where root(C) ∈ Σd(R) and p is a redex.

Example 11.24. Reconsider the TRS Rfib. For any t ∈ T (Σc(Rfib),V), the
contexts add(�, fib(t)) and add(fib(succ(t)),�) are defined due to the rewrite
sequence fib(succ(succ(t))) −→Rfib

add(fib(succ(t)), fib(t)).

Theorem 11.25 states that our notions of Definition 11.17 and Definition 11.23
are indeed suitable to determine spareness.

Theorem 11.25 (No Defined and Duplicating Context =⇒ Spare). If no
defined context is duplicating, then R is spare. If R is left-linear and spare,
then no defined context is duplicating.

Proof. If R is not spare, then there is a sequence s −→∗R t −→`→r,µ u with
s ∈ Tbasic(R) where all but the last step are spare, i.e., there are positions π, τ
such that t|µ.π.τ is a redex, `|π = x ∈ V, and #x(r) > 1. Thus, t|µ[�]π.τ is
defined and duplicating.
Now assume that R is left-linear and there is a context C which is defined and
duplicating. Then there is a rewrite sequence s −→∗R t D C[p] where s is basic
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and p is a redex by the definition of defined contexts. Moreover, there is a rule
`→ r, a variable x with #x(r) > 1, a substitution σ, and positions π and τ such
that C = `σ[�]π.τ and `|π = x ∈ V by the definition of duplicating contexts. As
` is linear, this implies C[p] = `θ where θ is the substitution with xθ = xσ[p]τ
and yθ = yσ for all variables y 6= x. Hence we get s −→∗R t D C[p] = `θ →`→r rθ

where xθ is not a normal form, i.e., where the last rewrite step is not spare.
Thus, R is not spare.

So while the absence of contexts that are both defined and duplicating always
implies spareness, the following example shows that the converse only holds for
left-linear TRSs.

Example 11.26. Consider the TRS R with the rules

f(x, x)→ g(x, x) b→ f(c, a) c→ f(a, a).

Since the basic terms b, c, or f(t, t) for t ∈ T (Σc(R),V) only start rewrite
sequences with spare steps, the TRS is spare. However, the context f(�, a)
is both defined (due to the rewrite sequence b −→R f(c, a)) and duplicating
(due to c −→R f(a, a)).

Definedness of contexts is undecidable, too.

Theorem 11.27. It is undecidable if a context is defined.

Proof. Using the construction from the proof of Theorem 11.9, h(�, a) is defined
w.r.t. R′ if and only if f(t1, . . . , tk) is normalizing w.r.t. R.

Our aim is to use Theorem 11.25 to prove spareness of TRSs. Thus, we have
to show that there is no context that is defined and duplicating. While these
properties are both undecidable by Theorem 11.19 and Theorem 11.27, we can
approximate duplicating contexts by Dup due to Lemma 11.22. Hence, we now
have to find a similar over-approximation for defined contexts. Here, a problem
is that a defined context may have several inner redexes (i.e., redexes can also
occur on positions independent of the position of �).

Example 11.28. Consider a TRS R containing the rule f(x)→ h(e, g(x)),
where h, e, and g are defined symbols (and thus e is a redex). To compute
all defined contexts, we have to consider all terms t with g(s) −→∗R t for some
s ∈ T (Σc(R),V), as each of these terms gives rise to a rewrite sequence
f(s)→ h(e, g(s)) −→∗R h(e, t) and thus h(�, t) is a defined context.

To avoid reasoning about all terms t reachable from instances of some term g(x)
as in Example 11.28, we abstract inner defined symbols to variables in order to
approximate the set of all defined contexts (e.g., the context h(�, g(x)) with
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the defined symbols h and g is abstracted to h(�, x1)). However, inner defined
symbols above � are abstracted to � (e.g., the context g(g(�)) is abstracted
to g(�) and h(e, g(�)) is abstracted to h(x1,�)). Moreover, we also abstract
from variables that occur multiple times in a term. To this end, we replace all
occurrences of variables by pairwise different variables. The reason is that equal
subterms may be reduced differently, i.e., equality of subterms is not preserved
by rewriting. Thus, Definition 11.29 introduces the abstraction of a context C,
which results from replacing all its topmost proper subterms that are variables
or have a defined root (but do not contain �) by pairwise different variables.

Definition 11.29 (Abstraction of Contexts). LetR be a TRS. For a context
C, let C̃ = C[�]τ where τ is the topmost position of C with τ 6= ε, C|τ D �,
and root(C|τ ) ∈ Σd(R) ∪ {�}. Let

Πd =
{
π
∣∣∣ root(C̃|π) ∈ Σd(R), π 6= ε

}
resp. ΠV =

{
π
∣∣∣ C̃|π ∈ V}

contain all positions of C̃’s proper subterms with defined root resp. all po-
sitions of variables in C̃. Moreover, let Π consist of the topmost positions
of Πd ∪ ΠV , i.e., Π is the smallest subset of Πd ∪ ΠV such that for each
τ ∈ Πd ∪ ΠV there is a π ∈ Π with π ≤ τ . Finally, let π1, . . . , πn be Π’s
elements in lexicographic order. Then we call bCc = C̃[x1]π1 . . . [xn]πn the
abstraction of C, where x1, . . . , xn ∈ V are pairwise different.

Example 11.30. Recall the rule f(x)→ h(e, g(x)) from Example 11.28. To
approximate the defined contexts induced by this rule we first replace one
topmost proper subterm of the right-hand side with defined root by � and
then we take the abstraction of the resulting context. In this way, we obtain
the contexts bh(�, g(x))c = h(�, x1) and bh(e,�)c = h(x1,�).

Lemma 11.31 states that every context C is an instance of its abstraction bCc.
Moreover, if C is an instance of D, then bCc is also an instance of D, provided
that D is a linear basic context.

Lemma 11.31 (Properties of b·c). Let R be a TRS.

(a) For any context C, we have C v bCc.

(b) For any context C and any linear basic context D, C v D implies
bCc v D.

(c) For any context C, any π ∈ pos(C) with C|π 6D �, and any term t with
root(t) ∈ Σd(R), we have bCc v bC[t]πc.

Proof. For (a), we first show C v C̃. We have C̃|τ = �. The position of �
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in C is indeed below τ since C|τ D �. Moreover C̃[x]τ matches C for a fresh
variable x, since C̃[x]τ = C[x]τ .
Now we show that C̃ v bCc. For all π ∈ Πd, C̃|π does not contain �. Thus, �
is at the same position in C̃ and bCc. Moreover, by instantiating every xi by
C̃|πi , bCc matches C̃. Hence, the claim follows from transitivity of v.
For (b), let C v D. We first show that this implies C̃ v D. Let C|π = � and
D|µ = �. Then C v D implies π ≥ µ. Moreover, C̃|τ = � with π ≥ τ . We
also obtain τ ≥ µ, because otherwise we have µ > τ , but then D[x]µ would not
match C, since root(C|τ ) ∈ Σd(R) and root(D[x]µ|τ ) = root(D|τ ) /∈ Σd(R) as
D is basic. Let σ be the matcher with D[x]µσ = C. By defining xσ′ = C̃|µ and
yσ′ = yσ for all variables y 6= x, we get D[x]µσ′ = Dσ[C̃|µ]µ = C[C̃|µ]µ = C̃.
To show bCc v D, note again that � is at the same position τ in C̃ and bCc,
i.e., for D|µ = � we have τ ≥ µ. Moreover, as D[x]µ matches C̃ and D is basic,
we must have D|πi ∈ V for all i ∈ {1, . . . , n}. The variables D|πi are pairwise
different, since D is linear. Hence, D[x]µ matches bCc.
For (c), since C|π 6D �, the position of � is the same in bCc and bC[t]πc.
Moreover up to variable renaming, their only difference is that there could
be a position above or equal to π where bC[t]πc has a fresh variable (since
root(t) ∈ Σd(R)). Hence bC[t]πc matches bCc.

To approximate the set of all defined contexts, we iteratively compute a set
Def such that each defined context is an instance of an element of Def . For
every rule ` → r where ` is basic, every subterm C[p] of r leads to a defined
context Cσ if root(C) ∈ Σd(R) and pσ reduces to a redex. Moreover, given a
rule ` → r with `|π = x ∈ V and a defined context D, consider the case that
D overlaps with the context `[�]π. So D represents terms which have a redex
below the position of � and `[�]π also represents some of these terms. Then
by the application of the rule `→ r, the inner defined symbol represented by
� is copied to all occurrences of x in r. If one of these occurrences is below a
defined symbol, then we again obtain a defined context.

Example 11.32. Consider the following TRS:

α1 : f(w, x, y, z)→ g(h) α2 : g(succ(x))→ f(x, x, x, h) α3 : h→ succ(h)

The context g(�) is defined due to α1. By replacing the variable x in the
left-hand side of α2 with �, we obtain the context g(succ(�)). As g(�) and
g(succ(�)) overlap, the defined symbol below � in g(�) can be copied to all
occurrences of x in the right-hand side of α2. Hence, instances of f(�, x, x, h),
f(x,�, x, h), and f(x, x,�, h) might be defined. To avoid reasoning about
the terms reachable from h, we replace it with a variable. Finally, we ab-
stract from the multiple occurrences of x by replacing them with different
variables. Hence, we add bf(�, x, x, h)c = f(�, x1, x2, x3), bf(x,�, x, h)c =
f(x1,�, x2, x3), and bf(x, x,�, h)c = f(x1, x2,�, x3) to Def .
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In rule α1 of Example 11.32, we obtained a defined context by replacing the
subterm h of the right-hand side with �. In general, we have to consider all
instances of subterms which reduce to a redex. For the sake of simplicity, we
over-approximate the set of such subterms by considering all subterms p of right-
hand sides with root(p) ∈ Σd(R). Then, we obtain an over-approximation of
all defined contexts by iterating the construction illustrated in Example 11.32.

Definition 11.33 (DefR). Given a TRS R, we define DefR to be the
smallest set such that:

(a) If ` → r ∈ R, r D C[p], and root(C), root(p) ∈ Σd(R), then bCc ∈
DefR.

(b) If D ∈ DefR, `[x]π → r ∈ R with r D C[x] and root(C) ∈ Σd(R), and
D and `[�]π overlap, then bCc ∈ DefR.

We omit the index R if it is clear from the context.

Lemma 11.34 shows that Def is finite (and hence computable), as it only
contains abstractions of contexts that result from replacing subterms of right-
hand sides of rules with �.

Lemma 11.34 (Finiteness of Def ). For each TRS R, DefR is finite.

Proof. We have DefR ⊆ {bCc | `→ r ∈ R, r D C[p]}, which is finite.

Example 11.35. For the TRS Rfib of Example 7.10, we have

badd(�, fib(x))c = add(�, x1) ∈ DefRfib

by Definition 11.33 (a) due to the right-hand side of Rule β4. This context
overlaps with the context add(succ(�), y) obtained from the left-hand side of
Rule β1 by replacing the variable x by �. Since the corresponding right-hand
side is add(x, succ(y)), this implies

badd(�, succ(y))c = add(�, succ(x1)) ∈ DefRfib
.

Similarly, we get

badd(fib(succ(x)),�)c = add(x1,�) ∈ DefRfib
and

badd(x, succ(�))c = add(x1, succ(�)) ∈ DefRfib

due to β4 and β1. Thus, we have

DefRfib
= {add(�, x1), add(�, succ(x1)), add(x1,�), add(x1, succ(�))}.
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Lemma 11.36 shows that the approximation of Definition 11.33 is indeed correct.

Lemma 11.36 (Def Over-Approximates Defined Contexts). If C is defined,
then there is a D ∈ Def such that C v D.

Proof. We use induction on n to prove that if there is a rewrite sequence
s −→nR t Dπ C[p]τ where s is basic, C|τ = �, and root(C), root(p) ∈ Σd(R),
then there is a D ∈ Def with C v D.

Case 1. Induction Base (n = 0).
As s is basic, s cannot have a subterm C[p] such that root(C), root(p) ∈
Σd(R). Hence, our claim trivially holds.

Case 2. Induction Step (n > 0).
Here, we have s −→n−1

R s′ −→`→r,µ t Dπ C[p]τ for some rule `→ r.

Case 2.1. µ and π are independent positions, i.e., µ‖π.
Then we also have s −→n−1

R s′ Dπ C[p]τ and hence our claim follows from
the induction hypothesis.

Case 2.2. µ is below π, but independent to π.τ , i.e., µ = π.ι and ι‖τ .
We get s −→n−1

R s′ Dπ C[`σ]ι[p]τ . By the induction hypothesis, there is a
D ∈ Def such that C[`σ]ι[�]τ v D. By construction, each D ∈ Def is
basic and linear. Hence by Lemma 11.31 (b), we get bC[`σ]ι[�]τc v D.
Moreover, we have C v bCc by Lemma 11.31 (a) and

bCc = bC[rσ]ι[�]τc v bC[`σ]ι[�]τc

by Lemma 11.31 (c), since root(`σ) ∈ Σd(R). Hence, C v D follows by
transitivity of v (Corollary 11.14 (a)).

Case 2.3. µ is below π.τ (µ ≥ π.τ).
Here, s −→n−1

R s′ Dπ C[q]τ with root(q) ∈ Σd(R), as q = `σ if µ = π.τ

and root(q) = root(p) if µ > π.τ . So our claim follows from the induction
hypothesis.

Case 2.4. µ is strictly below π, but strictly above π.τ (π.τ > µ > π).
Then there is a position ν with π.ν = µ. We get s −→n−1 s′ Dπ C[`σ]ν
where root(`σ) ∈ Σd(R). The induction hypothesis implies that there is
a D ∈ Def such that C[�]ν v D. Clearly, we have ν < τ and hence,
C = C[�]τ v C[�]ν by Corollary 11.14 (c). Hence, C v D follows from
transitivity of v (Corollary 11.14 (a)).

Case 2.5. π is below µ, i.e., µ ≤ π.
Then there is a position ν such that µ.ν = π. Thus, we have

s −→n−1
R s′ →`→r,µ s

′[rσ]µ D rσ[C[p]τ ]ν .
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Case 2.5.1. ν.τ ∈ pos(r) and r|ν.τ /∈ V.
Then root(C) = root(r|ν) and root(p) = root(r|ν.τ ). Hence, we obtain
br|ν [�]τc ∈ Def by Definition 11.33 (a). Moreover, C v r|ν [�]τ holds as
C also has � at the position τ , and as r|νσ = C[p]τ and thus, r|ν [x]τσ′ =
C if xσ′ = � and yσ′ = yσ for all variables y 6= x. By Lemma 11.31 (a)
and transitivity of v (Corollary 11.14 (a)), we get C v br|ν [�]τc.

Case 2.5.2. ν ∈ pos(r), r|ν /∈ V, and (ν.τ /∈ pos(r) or r|ν.τ ∈ V).
In this case, the root of C is “above” and p is “below” some variable x
of r in rσ, cf. Figure 11.1. So τ = ξ.ι such that ξ 6= ε, r|ν.ξ = x ∈ V,
and xσ|ι = rσ|ν.ξ.ι = rσ|ν.τ = p. As V(r) ⊆ V(`), there is also some
π ∈ pos(`) with `|π = x. Note that `σ|π.ι = xσ|ι = p. As ` /∈ V, we have

r

C

σ

p

x

τ

ν

ι

ξ

Figure 11.1: Case 5.2

π 6= ε. Since root(`), root(p) ∈ Σd(R) and s →n−1 s′ D `σ = `σ[p]π.ι,
there is a D ∈ Def such that `σ[�]π.ι v D by the induction hypothesis.
Moreover, we have root(r|ν) ∈ Σd(R) as ν is the position of C in rσ and
as r|ν /∈ V. We obtain br|ν [�]ξc ∈ Def by Definition 11.33 (b), since the
following holds:

• D ∈ Def

• `→ r = `[x]π → r ∈ R with r = r[x]ν.ξ D r|ν [x]ξ

• root(r|ν) ∈ Σd(R)

• D and `[�]π overlap as `σ[�]π.ι v D and `σ[�]π.ι v `[�]π; the latter
holds due to Corollary 11.14 (b), (c), and (a)

We now prove C v r|ν [�]ξ. Then, C v br|ν [�]ξc follows by Lemma 11.31
(a) and transitivity of v (Corollary 11.14 (a)). Note that � is at position
τ in C and at position ξ in r|ν [�]ξ with ξ ≤ τ = ξ.ι. Moreover, let x′ be
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a fresh variable where x′σ = xσ[�]ι. Then

r|ν [x′]ξσ = rσ|ν [x′σ]ξ
= rσ|ν [xσ[�]ι]ξ
= (rσ[xσ]νξ[�]νξι)|ν
= rσ[�]ντ |ν
= rσ|ν [�]τ
= C[p]τ [�]τ
= C.

Case 2.5.3. ν /∈ pos(r) or r|ν ∈ V.
Then there is an x ∈ V(r) with xσ D C[p]. As we also have x ∈ V(`),
we obtain s′ D `σ D xσ D C[p], i.e., the claim follows by the induction
hypothesis.

This leads to our main theorem: If the contexts in Def do not overlap with the
contexts in Dup, then R is spare. So if R is an overlay system then rccp(R) and
rccpi(R) coincide by Corollary 11.3 (b) and Corollary 11.6.

Theorem 11.37 (Approximating Spareness by Def and Dup). If there is
no D ∈ DefR which overlaps with some C ∈ DupR, then R is spare.

Proof. Assume that R is not spare. By Theorem 11.25, then there is a defined
context E that is duplicating. By Lemma 11.22 and Lemma 11.36 there are
C ∈ DupR and D ∈ DefR with E v C and E v D. Hence, C and D overlap
which contradicts the prerequisite of the theorem.

The criterion of Theorem 11.37 can easily be automated since DefR and DupR
are computable finite sets of contexts and for any two contexts, it is decidable
whether they overlap.

Example 11.38. We have

DupRfib
= {fib(succ(succ(�)))} and

DefRfib
= {add(�, x1), add(�, succ(x1)), add(x1,�), add(x1, succ(�))},

cf. Example 11.21 and Example 11.35. Clearly, DupRfib
and DefRfib

do not
overlap. As Rfib is an overlay system, this implies rccp(Rfib) = rccpi(Rfib).

Note that for spareness, Theorem 11.37 clearly subsumes Lemma 11.10 and
Lemma 11.11. Lemma 11.10 is subsumed as DupR = ∅ if R is right-linear.
Lemma 11.11 is subsumed since DefR = ∅ if R has no rules where defined
symbols are nested on right-hand sides. Thus, in both cases Theorem 11.37
implies spareness.
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11.3 Related Work

Sufficient criteria such that full and innermost termination coincide are pre-
sented in [70]. The least restrictive criterion in [70] requires the TRS to be a
locally confluent overlay system. Our technique is also particularly well suited
for overlay systems, but in [53] we show how one can also handle non-overlay
systems in combination with a suitable preprocessing. Moreover, instead of
local confluence we require that one may only use instantiations which keep
certain subterms of the rules in normal form. So compared to [70], both the
properties of interest (termination vs. complexity) as well as the identified suf-
ficient criteria are very different. Example 11.39 shows that the conditions
required by [70] are not sufficient to ensure rccp(R) = rccpi(R).

Example 11.39. Consider the following TRS R:

f(zero, y) → y g(x) → f(x, a)
f(succ(x), y) → f(x, node(y, y)) a → b

R is non-overlapping and thus a locally confluent overlay system. Hence,
termination and innermost termination of R coincide by [70]. Any basic term
of size n only leads to innermost rewrite sequences of lengthO(n). In contrast,
arbitrary rewrite sequences can have exponential length. For example, the
basic term g(succn(zero)) of size n + 2 is first reduced to f(succn(zero), a).
Instead of evaluating the subterm a, one could now apply the second f-rule
repeatedly and obtain a complete binary tree of height n whose (exponentially
many) leaves are a’s. Finally, these leaves can all be reduced to b in 2n rewrite
steps. Thus, the innermost runtime complexity of R is linear, whereas its
full runtime complexity is exponential.

In [111], the authors identify criteria which ensure that all normal forms of a
term w.r.t. full rewriting are also reachable via innermost rewriting. This turns
out to be the case for right-linear terminating overlay systems. As mentioned
before, our technique is also particularly well suited for overlay systems, but
we neither require termination nor right-linearity. In fact, non-right-linear
rules are common in many TRSs like Rfib from Example 7.10 which implement
natural algorithms. The following example illustrates that the property that
every normal form is reachable via innermost rewriting is not sufficient for
rccp(R) = rccpi(R).

Example 11.40. Consider the TRS R with the rules c→ f(a), f(a)→ f(a),
and a→ b. Clearly, all normal forms are reachable via innermost rewriting
as the only possible non-innermost rewrite steps have the form fn(a)→ fn(a).
However, we have rccpi(R)(n) ∈ Θ(1) but rccp(R)(n) ∈ Θ(ω) due to the non-
terminating rewrite sequence c → f(a) → f(a) → . . . that starts with the
basic term c.
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However, rccp(R) = rccpi(R) indeed holds for right-linear overlay systems, which
is a special case of the criterion introduced in Section 11.2.
In [77], it is shown that for non-duplicating overlay systems, whenever a term
t has a reduction to a normal form then t also starts an innermost reduction of
the same length. Thus, this implies rccp(R) = rccpi(R) for non-duplicating ter-
minating overlay systems, which can be used to improve automated complexity
analysis [15]. In contrast, our approach does not require termination and it
allows us to infer rccp(R) = rccpi(R) for many TRSs that are duplicating.
The paper [106] introduces general methodologies to compare the efficiency
of rewrite strategies and hence generalizes the results from [124] that are the
foundation of our technique. Thus, these methodologies may serve as a starting
point for a generalization of the presented technique. To this end, one has to
investigate to which extent the ideas from [106] can be automated.
Finally, there is plenty of research regarding reachability analysis for term
rewrite systems via tree automata techniques, e.g., [47, 60, 61]. In principle,
such techniques could also be used to approximate spareness (and hence ndg-
ness) of a TRS R. To this end, one could define a language L containing all
instances of left-hand sides where a variable which occurs more than once on
the right-hand side is instantiated with a non-normal form. If reachability tools
like Timbuk [61] can then prove that L is not reachable from Tbasic(R), then this
implies spareness. However, as reachability is undecidable, the corresponding
techniques are necessarily incomplete and potentially computationally expen-
sive. In contrast to such general purpose techniques, our approximation from
Section 11.2 is lightweight, easy to implement, and specifically designed for
our use case. Thus, a combination of the ideas presented in this chapter and
general purpose reachability analysis techniques may result in an improvement
in terms of precision, but it might also result in regressions w.r.t. performance.

238



11.4 Conclusion and Future Work

We presented a sufficient criterion to prove that a TRS is spare, i.e., that rewrite
sequences starting with basic terms can never duplicate redexes. For overlay
systems, spareness is equivalent to ndg-ness. A term rewrite system is ndg
if every rewrite sequence starting with basic terms complies with a rewrite
strategy called non-dup generalized innermost rewriting [124].
The crucial property of this rewrite strategy is that it is at most as expensive as
innermost rewriting. Thus, by proving that all rewrite sequences starting with
basic terms are ndg, one also proves that innermost rewriting is the “worst” (i.e.,
the most expensive) of all possible evaluation strategies. Hence, in such cases full
and innermost runtime complexity coincide, which permits strategy switching,
i.e., it allows us to analyze innermost instead of full runtime complexity or vice
versa. In this way, we can use all existing and future techniques for innermost
(resp. full) runtime complexity to also analyze full (resp. innermost) runtime
complexity.
Our sufficient criterion for spareness computes sets of contexts Dup and Def ,
which represent families of terms via an instance relation. Thereby, the occur-
rence of “�” represents a subterm that may be duplicated (in the case of Dup)
or that may contain nested redexes (in the case of Def ) in rewrite sequences
starting with basic terms. Thus, if Def and Dup do not overlap (i.e., do not have
common instances), then redexes may never be duplicated in rewrite sequences
starting with basic terms, i.e., then the TRS is spare.
The presented criterion is easy to automate and implemented in the tool AProVE.
Furthermore, in combination with the technique to remove rules with non-basic
left-hand sides from [53, Section 5], it can also be used to prove ndg-ness of
non-overlay systems. However, non-overlay systems are irrelevant in the context
of program verification and thus beyond the scope of this thesis. See Chapter 12
for a detailed evaluation of our strategy switching technique.
In future work, one should investigate alternative approximations of spareness,
for example based on tree automata techniques [47, 60, 61]. Moreover, ideas
from [106] may lead to even more general criteria for rccp(R) = rccpi(R). Hence,
complexity analysis techniques for full runtime complexity might benefit from
the automation of ideas from [106].
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12

Experiments

In this chapter, we evaluate the power of the techniques presented in Part III
regarding full (Section 12.1) and innermost (Section 12.2) rewriting. Therefore,
we use 1022 examples from the category “Runtime Complexity – Innermost
Rewriting” and 899 examples from the category “Runtime Complexity – Full
Rewriting” of the Termination Problems Data Base (TPDB) 10.4 [122], the
collection of examples which was used at the Termination and Complexity
Competition 2016 [121]. Note that, for these categories, the TPDB 10.5 which
was used at the Termination and Complexity Competition 2017 is a subset of the
TPDB 10.4, as all non-left-linear and all non-constructor systems were removed
from the category “Runtime Complexity – Innermost Rewriting” prior to the
Termination and Complexity Competition 2017. In the category “Runtime
Complexity – Full Rewriting”, we disregard 60 non-standard TRSs with extra
variables on right-hand sides of rules.
In all benchmarks, we preprocessed all TRSs with AProVE’s implementation
of the technique from [53, Section 5] to remove rules which are not reachable
from basic terms. For all benchmarks with AProVE, we used a timeout of 60
seconds (including the aforementioned preprocessing). Besides AProVE, we also
tested with TCT [17]. Here, we also preprocessed the TRSs with AProVE as
mentioned above. For TCT, we also used a timeout of 60 seconds, excluding
the time that AProVE needed for its preprocessings.
All tools that were used for the evaluation, all strategies that were used to
configure AProVE, and detailed information on the invocation of the tools are
available at [52].
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12.1 Full Rewriting

We first consider full rewriting, where we analyzed the examples from the TPDB
with AProVE’s implementation of the following techniques for the inference of
lower bounds:

• loop detection (Chapter 8)

– standalone

– with argument filtering (Section 9.7)

• induction technique (Chapter 9)

– standalone

– with indefinite lemmas (Section 9.6)

– with argument filtering (Section 9.7)

– with indefinite lemmas and argument filtering

Recall that the techniques for the inference of lower bounds presented in this the-
sis are the first of their kind, i.e., we cannot compare our results with any other
techniques for lower bounds.1 Moreover, we used the following configurations
to infer upper bounds with AProVE:

• semi-decision procedure for constant bounds (Chapter 10)

• Matchbounds, an automata-based technique for the inference of linear
upper bounds [126, 127]

• strategy switching in combination with

– the semi-decision procedure for constant bounds

– the transformation from TRSs to RNTSs described in [103] together
with the technique from Chapter 5

– the transformation from TRSs to RNTSs described in [103] together
with CoFloCo

– Dependency Tuples [105], an adaption of the Dependency Pair Frame-
work [66] for complexity analysis

This covers all techniques for the inference of upper bounds that are implemented
in AProVE. Note that AProVE’s implementation of Matchbounds does not take
the rewrite strategy into account, i.e., combining Matchbounds with strategy
switching does not have any effect. Finally, we also used TCT [17] with and
without strategy switching for the inference of upper bounds.

1Note that TCT can also infer lower bounds for TRSs. To this end, it uses the loop
detection technique from Chapter 8, which is also implemented in AProVE. Thus, taking
TCT’s lower bounds into account would not add any value to our evaluation.
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12.1. Full Rewriting

As witnessed by the annual Termination and Complexity Competition [121],
AProVE and TCT have been the leading tools for complexity analysis of term
rewriting since many years. Thus, the configurations mentioned above represent
the current state of the art.

Loop Detection To evaluate the power of loop detection (standalone), Ta-
ble 12.1 compares its results with the smallest upper bounds proven by all the
configurations named above. Loop detection infers a non-trivial lower bound
in all but 10 cases where no constant upper bound can be proven. Out of
these 10 failures, 5 are caused by timeouts. From the remaining 5 examples,
2 are not left-linear and one example is not a constructor system. Note that
while we are not aware of an ordinary left-linear constructor system where loop
detection fails, it is easy to construct a non-left-linear TRS or a non-constructor
system with at least linear complexity, but without a decreasing loop. From
the remaining two examples, one has a decreasing loop of length 13 and our
implementation stops narrowing too early to find it. The last example has
constant runtime complexity, but the semi-decision procedure from Chapter 10
times out.
Loop detection infers an exponential bound in 143 cases and it proves that the
runtime complexity is unbounded in 90 cases. The average runtime was 4.2
seconds per successfully analyzed example.
To see if the argument filtering technique from Section 9.7 has an impact on
the power of loop detection, we compare the results of loop detection with and
without argument filtering in Table 12.2. The results with argument filtering
are strictly worse than without argument filtering, i.e., loop detection should
not be combined with the technique from Section 9.7.

Induction Technique Table 12.3 compares the results of the induction tech-
nique with argument filtering and indefinite lemmas with the smallest upper
bounds proven by any configuration. The induction technique fails in 170 cases
where no constant upper bound is proven, i.e., significantly more often than
loop detection. However, the main advantage of the induction technique in
comparison with loop detection is its ability to infer super-linear polynomial
bounds, which happens in 87 cases. The average runtime was 6.7 seconds per
successfully analyzed example.
Table 12.4 compares the induction technique (standalone) with the combination
of argument filtering and the induction technique. Thus, it illustrates how
much the induction technique benefits from the argument filtering technique
presented in Section 9.7. With argument filtering, the induction technique
infers 8 additional bounds, two of which are exponential. Remarkably, loop
detection fails to infer these two exponential bounds, as they are caused by
nested recursion. In other words, in both cases the recursive calls that cause
exponential costs are not at independent positions and hence they do not give
rise to compatible decreasing loops. In such cases, the induction technique is
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Chapter 12. Experiments

Loop Detection
B

es
t

U
pp

er
B

ou
nd

rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) Ω(n5) Ω(n10) EXP Ω(ω)
O(1) 56 – – – – – – – –
O(n) 4 232 – – – – – – –
O(n2) – 38 – – – – – – –
O(n3) – 15 – – – – – – –
O(n4) – 2 – – – – – – –
O(n5) – 2 – – – – – – –
O(n10) – 1 – – – – – – –
EXP – – – – – – – 3 –
O(ω) 6 310 – – – – – 140 90

Table 12.1: Best Upper Bound vs. Loop Detection

Loop Detection

L.
D

.F
ilt

er
ed rc(n) Ω(1) Ω(n) EXP Ω(ω)

Ω(1) 66 – – –
Ω(n) – 600 16 –
EXP – – 127 –
Ω(ω) – – – 90

Table 12.2: Loop Detection Filtered vs. Loop Detection

Induction Technique

B
es

t
U

pp
er

B
ou

nd

rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) Ω(n5) Ω(n10) EXP Ω(ω)
O(1) 56 – – – – – – – –
O(n) 32 204 – – – – – – –
O(n2) 3 28 7 – – – – – –
O(n3) – 5 3 7 – – – – –
O(n4) – – – 2 – – – – –
O(n5) 1 1 – – – – – – –
O(n10) – 1 – – – – – – –
EXP – 3 – – – – – – –
O(ω) 134 331 60 7 1 – – 13 –

Table 12.3: Best Upper Bound vs. Induction Technique

Induction Technique Standalone

I.D
.F

ilt
er

ed

rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n5) EXP
Ω(1) 459 1 – – – –
Ω(n) 5 351 – – – –
Ω(n2) 1 – 62 – – –
Ω(n3) – – – 14 – –
Ω(n5) – – – – 1 –
EXP 2 – – – – 3

Table 12.4: Induction Technique Filtered vs. Induction Technique Standalone
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12.1. Full Rewriting

superior to loop detection.
Finally, Table 12.5 compares the induction technique (standalone) with the
variant of the induction technique which also infers indefinite lemmas (cf. Sec-
tion 9.6). Clearly, indefinite lemmas substantially increase the power of the
induction technique. With indefinite lemmas, AProVE infers better bounds in
252 cases.

Loop Detection vs. Induction Technique The comparison of loop de-
tection with the induction technique (with argument filtering and indefinite
lemmas) is shown in Table 12.6. It clearly shows the orthogonality of both
techniques. Hence, recent versions of AProVE use both techniques by default.
To conclude the evaluation of the presented techniques for the inference of lower
bounds for full rewriting, Table 12.7 compares the best lower bounds inferred
by all considered configurations with the respective upper bounds. Thus, this
comparison represents the current state of the art, including the techniques
presented in this thesis. The fact that there are no entries above the diagonal
means that there are no conflicting bounds, i.e., there is no case where the
presented techniques yield a lower bound which is greater than the respective
upper bound. In 252 of the 296 cases (85%) where a non-trivial lower as well
as a non-trivial upper bound is proven, the bounds are tight, i.e., the lower and
the upper bound coincide. Note that the number of tight bounds would increase
significantly if state-of-the-art complexity analysis tools had better support for
exponential upper bounds.

Constant Bounds We now evaluate the presented semi-decision procedure
for the inference of constant bounds. To this end, Table 12.8 compares its results
with the smallest upper bounds inferred by all other considered configurations.
The technique from Chapter 10 can infer 5 constant bounds which cannot be
inferred by any other configuration. Moreover, whenever any other configuration
infers a constant bound, then the technique from Chapter 10 succeeds, too. The
average runtime per successfully analyzed example was 1.4 seconds. Since our
semi-decision procedure subsumes all other techniques w.r.t. constant bounds,
we can see from Table 12.7 that there are only 6 cases where the technique
from Chapter 10 fails and we also fail to infer a non-trivial lower bound (i.e.,
to disprove constant complexity).

Strategy Switching To evaluate the effect of the strategy switching tech-
nique from Chapter 11, we compare the state of the art with and without
strategy switching. To this end, Table 12.9 compares the best upper bounds
proven by any considered configuration with the results of those configurations
that can also infer upper bounds for full rewriting without strategy switching:
TCT, Matchbounds, and the semi-decision procedure for upper bounds from
Chapter 10. With strategy switching, we can infer upper bounds for 60 TRSs
where all other techniques fail. This means that we can prove 353 upper bounds
with strategy switching, which is a significant improvement in comparison to
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Chapter 12. Experiments

Induction Technique Standalone

I.T
.+

In
de

fin
ite

Le
m

. rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) Ω(n5) EXP
Ω(1) 231 – – – – – –
Ω(n) 230 340 – – – 1 –
Ω(n2) – 10 59 – – – –
Ω(n3) – – 3 13 – – –
Ω(n4) – – – 1 – – –
Ω(n5) – – – – – – –
EXP 6 2 – – – – 3

Table 12.5: Induction Technique with Indefinite Lemmas vs. Induction Tech-
nique Standalone

Induction Technique

Lo
op

D
et

ec
tio

n

rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) EXP Ω(ω)
Ω(1) 62 4 – – – – –
Ω(n) 69 462 53 13 1 2 –
Ω(n2) – – – – – – –
Ω(n3) – – – – – – –
Ω(n4) – – – – – – –
EXP 42 76 13 1 – 11 –
Ω(ω) 53 31 4 2 – – –

Table 12.6: Loop Detection vs. Induction Technique

Best Lower Bound

B
es

t
U

pp
er

B
ou

nd

rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) Ω(n5) Ω(n10) EXP Ω(ω)
O(1) 56 – – – – – – – –
O(n) 1 235 – – – – – – –
O(n2) – 31 7 – – – – – –
O(n3) – 5 3 7 – – – – –
O(n4) – – – 2 – – – – –
O(n5) – 2 – – – – – – –
O(n10) – 1 – – – – – – –
EXP – – – – – – – 3 –
O(ω) 5 261 43 4 1 – – 142 90

Table 12.7: Best Upper Bound vs. Best Lower Bound

Constant Bounds

O
th

er
U

pp
er

B
ou

nd
s

rc(n) O(1) O(n) O(n2) O(n3) O(n4) O(n5) O(n10) EXP O(ω)
O(1) 51 – – – – – – – –
O(n) 4 – – – – – – – 236
O(n2) – – – – – – – – 38
O(n3) – – – – – – – – 15
O(n4) – – – – – – – – 2
O(n5) – – – – – – – – 2
O(n10) – – – – – – – – 1
EXP – – – – – – – – 3
O(ω) 1 – – – – – – – 546

Table 12.8: Other Upper Bounds vs. Constant Bounds
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12.1. Full Rewriting

the 293 bounds that can be proven without strategy switching. Moreover, the
precision improves in 8 cases.

Best Upper Bound

N
o

St
ra

te
gy

Sw
itc

hi
ng

rc(n) O(1) O(n) O(n2) O(n3) O(n4) O(n5) O(n10) EXP O(ω)
O(1) 56 – – – – – – – –
O(n) – 210 – – – – – – –
O(n2) – 7 14 – – – – – –
O(n3) – 1 – 3 – – – – –
O(n4) – – – – – – – – –
O(n5) – – – – – 1 – – –
O(n10) – – – – – – 1 – –
EXP – – – – – – – – –
O(ω) – 18 24 12 2 1 – 3 546

Table 12.9: No Strategy Switching vs. Best Upper Bound
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12.2 Innermost Rewriting

Now we consider innermost rewriting, where we analyzed the examples from
the TPDB with AProVE’s implementation of the following techniques for the
inference of lower bounds:

• loop detection (Chapter 8)

– standalone

– with argument filtering (Section 9.7)

– with strategy switching (Chapter 11)

• induction technique (Chapter 9)

– standalone

– with indefinite lemmas (Section 9.6)

– with argument filtering (Section 9.7)

– with indefinite lemmas and argument filtering

– with indefinite lemmas, argument filtering, and strategy switching

Moreover, we used the following configurations to infer upper bounds with
AProVE:

• semi-decision procedure for constant bounds (Chapter 10)

• Matchbounds [126, 127]

• the transformation from TRSs to RNTSs described in [103] together with
the technique from Chapter 5

• the transformation from TRSs to RNTSs described in [103] together with
CoFloCo

• Dependency Tuples [105]

Again, this covers all techniques for the inference of upper bounds on the inner-
most runtime complexity of term rewriting implemented in AProVE. Finally,
we also used TCT [17] to infer upper bounds.
As in the case of full rewriting, these configurations represent the current state
of the art, as AProVE and TCT have been the leading complexity analysis tools
for term rewriting since many years [121].

248



12.2. Innermost Rewriting

Innermost Loop Detection To evaluate the power of innermost loop de-
tection (standalone), Table 12.10 compares its results with the smallest upper
bounds proven by all the configurations named above. Innermost loop detec-
tion infers a non-trivial lower bound in all but 9 cases where no constant upper
bound can be proven. As for full rewriting, the reasons for failure include time-
outs (3 cases), non-left-linearity (2 cases), and very long decreasing loops (1
case). From the remaining 3 examples where innermost loop detection fails, 2
are non-ordinary (i.e., they contain rules with cost 0). Again, we are not aware
of an ordinary left-linear constructor system where loop detection fails, but it
is easy to construct a non-ordinary TRS with at least linear complexity, but
without a decreasing loop. The last example where innermost loop detection
fails has a decreasing loop which cannot be obtained by narrowing the rules of
the TRS. Instead, one would have to instantiate one of its rules. Thus, our
narrowing-based heuristic fails to detect this loop.
Innermost loop detection infers an exponential bound in 41 cases and it proves
that the runtime complexity is unbounded in 100 cases. The average runtime
was 4.1 seconds per successfully analyzed example.
To see if the argument filtering technique from Section 9.7 has an impact on the
power of innermost loop detection, we compare the results of innermost loop
detection with and without argument filtering in Table 12.11 (see [54] for an
adaption of our argument filtering technique for innermost rewriting). However,
the results are equal in both settings, i.e., innermost loop detection does not
benefit from the technique presented in Section 9.7.
Finally, Table 12.12 compares the power of innermost loop detection with the
combination of strategy switching and innermost loop detection. The results
are orthogonal, but the differences are marginal. In particular, the combination
of strategy switching and innermost loop detection cannot prove a non-trivial
lower bound for any of the examples where innermost loop detection fails.

Innermost Induction Technique Table 12.13 compares the results of the
innermost induction technique with argument filtering and indefinite lemmas
with the smallest upper bounds proven by any configuration (see [54] for an
adaption of indefinite lemmas for innermost rewriting). As in the case of full
rewriting, the innermost induction technique fails significantly more often than
innermost loop detection, but demonstrates its strength by inferring 96 super-
linear polynomial bounds. The average runtime was 7.5 seconds per successfully
analyzed example.
Table 12.14 compares the innermost induction technique (standalone) with
the combination of argument filtering and the innermost induction technique.
With argument filtering, the innermost induction technique infers 16 additional
bounds. As in the case of full rewriting, two of them are exponential and cannot
be inferred by innermost loop detection, as they are caused by nested recursion.
To illustrate the effect of indefinite lemmas, Table 12.15 compares the inner-
most induction technique (standalone) with the variant of the innermost induc-
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Innermost Loop Detection
B

es
t

I.
U

pp
er

B
ou

nd
rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) Ω(n5) Ω(n10) EXP Ω(ω)
O(1) 58 – – – – – – – –
O(n) 6 340 – – – – – – –
O(n2) – 125 – – – – – – –
O(n3) – 36 – – – – – – –
O(n4) – 5 – – – – – – –
O(n5) – 3 – – – – – – –
O(n10) – 1 – – – – – – –
EXP – 1 – – – – – 4 –
O(ω) 3 303 – – – – – 37 100

Table 12.10: Best Innermost Upper Bound vs. Innermost Loop Detection

Innermost Loop Detection

I.
L.

D
.F

ilt
. rc(n) Ω(1) Ω(n) EXP Ω(ω)

Ω(1) 67 – – –
Ω(n) – 814 – –
EXP – – 41 –
Ω(ω) – – – 100

Table 12.11: Innermost Loop Detection Filtered vs. Innermost Loop Detection

Innermost Loop Detection

S.
S.

&
I.

L.
D

. rc(n) Ω(1) Ω(n) EXP Ω(ω)
Ω(1) 67 2 – –
Ω(n) – 809 – 2
EXP – – 41 –
Ω(ω) – 3 – 98

Table 12.12: Innermost Loop Detection with Strategy Switching vs. Innermost
Loop Detection

Innermost Induction Technique

B
es

t
I.
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pp

er
B

ou
nd

rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) Ω(n5) Ω(n10) EXP Ω(ω)
O(1) 58 – – – – – – – –
O(n) 53 293 – – – – – – –
O(n2) 6 100 19 – – – – – –
O(n3) 1 18 6 11 – – – – –
O(n4) – 2 – 3 – – – – –
O(n5) 1 2 – – – – – – –
O(n10) – 1 – – – – – – –
EXP – 4 – – – – – 1 –
O(ω) 132 242 50 6 1 – – 12 –

Table 12.13: Best Innermost Upper Bound vs. Innermost Induction Technique
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12.2. Innermost Rewriting

tion technique which also infers indefinite lemmas. Clearly, indefinite lemmas
substantially increase the power of the innermost induction technique. With
indefinite lemmas, AProVE infers better bounds in 262 cases.
Finally, Table 12.16 compares the innermost induction technique with and with-
out strategy switching. The results with strategy switching are strictly worse
than without strategy switching due to one additional timeout. Thus, neither
innermost loop detection nor the innermost induction technique significantly
benefit from strategy switching, i.e., strategy switching is mainly of interest for
the inference of upper bounds.

Innermost Loop Detection vs. Innermost Induction Technique The
comparison of innermost loop detection with the innermost induction technique
(with argument filtering and indefinite lemmas) is shown in Table 12.17. As in
the case of full rewriting, it clearly shows the orthogonality of both techniques,
such that they should be combined in practice.
To conclude the evaluation of the presented techniques for the inference of lower
bounds for innermost rewriting, Table 12.18 compares the best lower bounds
inferred by all considered configurations with the respective upper bounds.
Thus, this comparison represents the current state of the art, including the
techniques presented in this thesis. Again, the fact that there are no entries
above the diagonal means that there are no conflicting bounds, i.e., there is no
case where the presented techniques yield a lower bound which is greater than
the respective upper bound. In 376 of the 517 cases (73%) where a non-trivial
lower as well as a non-trivial upper bound is proven, the bounds are tight, i.e.,
the lower and the upper bound coincide.

Constant Innermost Bounds We finish our evaluation with Table 12.19,
which compares the results of the semi-decision procedure for constant inner-
most bounds from Chapter 10 with the smallest upper bounds inferred by all
other considered configurations. The technique from Chapter 10 can infer 3
constant bounds which cannot be inferred by any other configuration. Moreover,
whenever any other configuration infers a constant bound, then the technique
from Chapter 10 succeeds, too. The average runtime per successfully analyzed
example was 1.4 seconds. As in the case of full rewriting, Table 12.18 shows
that there are only 6 cases where the technique from Chapter 10 fails and we
also fail to disprove constant complexity.
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Innermost Induction Technique Standalone

I.
I.T

.F
ilt

er
ed

rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n5) EXP
Ω(1) 494 1 – – – –
Ω(n) 12 423 – – – –
Ω(n2) 1 – 67 – – –
Ω(n3) 1 – – 17 – –
Ω(n5) – – – – 1 –
EXP 2 – – – – 3

Table 12.14: Innermost Induction Technique Filtered vs. Innermost Induction
Technique Standalone

Innermost Induction Technique Standalone

I.
I.T

.+
In

de
f.

Le
m

. rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) Ω(n5) EXP
Ω(1) 264 – – – – – –
Ω(n) 240 412 – – – 1 –
Ω(n2) – 10 64 – – – –
Ω(n3) – – 3 16 – – –
Ω(n4) – – – 1 – – –
Ω(n5) – – – – – – –
EXP 6 2 – – – – 3

Table 12.15: Innermost Induction Technique with Indefinite Lemmas vs. Inner-
most Induction Technique Standalone

Innermost Induction Technique

S.
S.

&
I.

I.T
. rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) EXP

Ω(1) 251 – 1 – – –
Ω(n) – 662 – – – –
Ω(n2) – – 74 – – –
Ω(n3) – – – 20 – –
Ω(n4) – – – – 1 –
EXP – – – – – 13

Table 12.16: Innermost Induction Technique with Strategy Switching vs. Inner-
most Induction Technique

Innermost Induction Technique

I.
Lo

op
D

et
ec

tio
n rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) EXP Ω(ω)

Ω(1) 64 2 1 – – – –
Ω(n) 123 599 69 18 1 4 –
Ω(n2) – – – – – – –
Ω(n3) – – – – – – –
Ω(n4) – – – – – – –
EXP 7 24 1 – – 9 –
Ω(ω) 57 37 4 2 – – –

Table 12.17: Innermost Loop Detection vs. Innermost Induction Technique
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Best Innermost Lower Bound

B
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rc(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) Ω(n5) Ω(n10) EXP Ω(ω)
O(1) 58 – – – – – – – –
O(n) 4 342 – – – – – – –
O(n2) – 106 19 – – – – – –
O(n3) – 19 6 11 – – – – –
O(n4) – 2 – 3 – – – – –
O(n5) – 3 – – – – – – –
O(n10) – 1 – – – – – – –
EXP – 1 – – – – – 4 –
O(ω) 2 246 45 4 1 1 – 41 103

Table 12.18: Best Innermost Upper Bound vs. Best Innermost Lower Bound

Innermost Constant Bounds

O
th
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I.
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er
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nd

s rc(n) O(1) O(n) O(n2) O(n3) O(n4) O(n5) O(n10) EXP O(ω)
O(1) 55 – – – – – – – –
O(n) 3 – – – – – – – 346
O(n2) – – – – – – – – 125
O(n3) – – – – – – – – 36
O(n4) – – – – – – – – 5
O(n5) – – – – – – – – 3
O(n10) – – – – – – – – 1
EXP – – – – – – – – 5
O(ω) – – – – – – – – 443

Table 12.19: Other Innermost Upper Bounds vs. Innermost Constant Bounds
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Conclusion and Outlook

We presented six techniques to analyze the complexity of rewrite systems, each
with its respective strengths and weaknesses. Regarding lower bounds, the
technique from Chapter 4, which is based on loop acceleration and chaining,
supports full integer arithmetic, but its support for recursion is limited. Fur-
thermore, it cannot handle data structures. In contrast, the loop detection
technique (Chapter 8) and the induction technique (Chapter 9) lack support
for arithmetic, but they can deal with data structures and full recursion. While
loop detection is very efficient and widely applicable, it cannot infer super-linear
polynomial bounds. In contrast, the induction technique supports such bounds,
but at the price of being less efficient.
While we already discussed possible future improvements for the individual
techniques in the respective chapters, in the big picture one should combine
ideas from Chapter 4, Chapter 8, and Chapter 9 to enable the inference of
lower bounds for programs operating on both, integers and data structures.
The easiest way to support such programs is to represent numbers as terms
and encode the semantics of (fragments of) integer arithmetic into rewrite
lemmas to avoid losing domain specific knowledge. In this way, the induction
technique could be used to analyze programs with both data structures and
integers. However, our technique to reason about families of rewrite sequences
via induction from Chapter 9 is certainly not on the same level as highly
specialized tools like the recurrence solvers used by the technique from Chapter 4.
Thus, one should also consider under-approximating transformations from data
structures to numbers. Such transformations would allow us to also use the
technique from Chapter 4 to reason about programs with arithmetic and data
structures. Note that the generator functions used by the induction technique
map natural numbers to data structures, i.e., the idea of representing data
structures as numbers has already been exploited in Chapter 9, which shows
the feasibility of this idea for the inference of lower bounds. However, these
generator functions are currently limited to homogeneous data structure like,
e.g., lists of zeros. For now, proving lower bounds by finding families of rewrite
sequences that operate on inhomogeneous data structures remains an open
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Chapter 13. Conclusion and Outlook

research problem.
Regarding upper bounds, Chapter 5 showed how support for recursion can
be added to arbitrary existing techniques for the analysis of (non-recursive)
integer programs. In Chapter 10 we saw how constant upper bounds for term
rewrite systems can be inferred, which turns out to be semi-decidable. Thus,
all presented techniques support full recursion. However, the technique from
Chapter 5 supports arithmetic, but no data structures, whereas it is the other
way around in Chapter 10.
Thus, as for lower bounds, future work may be concerned with the development
of techniques which can handle both, data structures and arithmetic, in a
sophisticated way. However, the development of such techniques is less urgent
than in the case of lower bounds. The reason is that over-approximating
transformations from data structures to numbers are very natural and widely
used in practice (see, e.g., [2, 7, 51, 103]). Thus, upper bounds for programs
with both arithmetic and data structures can already be deduced automatically
using such transformations.
Note that the idea to prove constant upper bounds via narrowing from Chap-
ter 10 naturally carries over to richer classes of rewrite systems like rewrite
systems with integers and terms (ITRSs). However, for ITRSs one does not
obtain a semi-decision procedure for constant upper bounds as for TRSs. The
reason is that ITRS rules can encode arbitrary conjunctions of (possibly non-
linear) constraints over the integers. Thus, the narrowing relation becomes
undecidable due to Hilbert’s tenth problem if one extends term rewriting with
integer arithmetic.
Finally, the strategy switching technique from Chapter 11 takes a special posi-
tion, as it has applications for both lower and upper bounds. More precisely,
it allows us to use techniques for the inference of upper bounds on the inner-
most runtime complexity also for full rewriting. Similarly, it makes techniques
for the inference of lower bounds on the full runtime complexity applicable to
innermost rewriting. While our experiments indicate that the latter is of little
practical value, future techniques for lower bounds may exploit the flexibility
of full rewriting more aggressively. Then strategy switching might also be of
interest in the context of lower bounds.
Regarding richer classes of rewrite systems, there seem to be no significant
obstacles regarding an extension to ITRSs or even arbitrary LCTRSs (i.e., term
rewrite systems with arbitrary built-in theories), which may be an interesting
direction for future work as soon as complexity analysis tools for ITRSs or
LCTRSs are available.
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A

Missing Proofs

In this chapter, we present those theorems, lemmas, and proofs which were
omitted previously to improve the reading experience. First, we prove the
following generalization of Theorem 5.11 to an arbitrary number of defined
symbols on the right-hand side.

Theorem A.1 (Size Bounds for ITSs (Generalized)). Let P be an ITS whose
rules are of the form

` w−→ u [ϕ]

or

` w−→ u+
m∑
i=1

vi · gi(ti) [ϕ]

with u, vi ∈ T (ΣZ,V) and gi ∈ Σ. Moreover, let

P↑ =
{

f ′(x, tv) u·tv−−→
m∑
i=1

g′i(ti, vi · tv) [ϕ]

∣∣∣∣∣ f(x) w−→ u+
m∑
i=1

vi · gi(ti) [ϕ] ∈ P
}

∪
{

f ′(x, tv) u·tv−−→ 0 [ϕ]
∣∣∣ f(x) w−→ u [ϕ] ∈ P

}
for a fresh variable tv ∈ V and let rt be a runtime bound for P↑. Then sz
with sz(f) = rt(f′)(x, 1) for all f ∈ Σ is a size bound for P.

Proof. To be able to use the runtime bound rt for P↑ as a size bound for P, it
suffices to prove that f(n) −→∗P n implies f′(n, 1) n−→∗P↑ 0 for all k ∈ N, f ∈ Σk,
n ∈ Zk, and n ∈ T (ΣZ). Instead, we prove the following generalized statement
for all d ∈ Z:

f(n) −→∗P n implies f ′(n, d) n·d−−→∗P↑ 0 (1)

From this, the claim of Theorem A.1 follows.
We prove (1) by induction on the length of the derivation. In the base case, we
have f(n) −→P n with some rule f(x) −→ u [ϕ] ∈ P and some substitution σ with
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uσ = n, and thus by construction f ′(n, d) n·d−−→P↑ 0 as desired.
In the induction step, we have

f(n) −→P ũ+
m∑
i=1

ṽi · gi(t̃i) −→∗P n

for ground terms ũ, ṽi ∈ T (ΣZ). Thus, by construction

f′(n, d) ũ·d−−→P↑
m∑
i=1

g′i(t̃i, ṽi · d).

Let ñi ∈ T (ΣZ) be the P-normal forms of gi(t̃i) such that n = ũ+
∑m
i=1 ṽi · ñi.

From the induction hypothesis (1), we obtain

g′i(t̃i, ṽi · d) ñi·ṽi·d−−−−→∗P↑ 0.

Hence, the total cost of the P↑-derivation f ′(n, d) −→∗P↑ 0 is

ũ · d+
m∑
i=1

ñi · ṽi · d = n · d

as desired.

Next, we finish the proof of Lemma 4.41.

Lemma 4.41 (Bounds for Function Composition). Let f : N → R≥0 and
g : N → N where g(m) ∈ O(md) for some d ∈ N with d > 0. Moreover, let
f(m) be weakly and let g(m) be strictly monotonically increasing for large
enough m.

• If f(g(m)) ∈ Ω(mk) with k ∈ N, then f(m) ∈ Ω(m k
d ).

• If f(g(m)) ∈ Ω(km) with k > 1, then f(m) ∈ Ω(b d
√
m) for some b > 1.

Proof. We prove the missing case f(g(m)) ∈ Ω(km). The proof is analogous to
the proof of the case f(g(m)) ∈ Ω(mk). Here, g(m) ∈ O(md) and f(g(m)) ∈
Ω(km) imply

∃m0, c, c
′ > 0.∀m ∈ N≥m0 . g(m) ≤ c ·md ∧ c′ · km ≤ f(g(m)).

We can choose m0 large enough such that f |N≥m0
is weakly and g|N≥m0

is strictly
monotonically increasing. Let M = {g(m) | m ≥ m0} and let g−1 : M → N≥m0

be the function such that g(g−1(m)) = m. By instantiating m with g−1(m),
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we obtain

∃m0, c, c
′ > 0.∀m ∈M.

g(g−1(m)) ≤ c · (g−1(m))d ∧ c′ · kg
−1(m) ≤ f(g(g−1(m)))

which simplifies to

∃m0, c, c
′ > 0.∀m ∈M.m ≤ c · (g−1(m))d ∧ c′ · kg

−1(m) ≤ f(m).

When dividing by c and building the dth root on both sides of the first inequality,
we get

∃m0, c, c
′ > 0.∀m ∈M. d

√
m

c
≤ g−1(m) ∧ c′ · kg

−1(m) ≤ f(m).

By monotonicity of d
√

m
c and f(m) in m, this implies

∃m0, c, c
′ > 0.∀m ∈ N≥g(m0).

d

√
m

c
≤ dg−1e(m) ∧ c′ · kbg

−1c(m) ≤ f(m).

Note that g|N≥m0
is total and hence, g−1 : M → N≥n0 is surjective. Moreover, by

strict monotonicity of g|N≥m0
, M is infinite and g−1 is also strictly monotonically

increasing. Hence, by (4.17) we get dg−1e(m) ≤ bg−1c(m) + 1 for all m ∈
N≥g(m0). Thus,

∃m0, c, c
′ > 0.∀m ∈ N≥g(m0).

d

√
m

c
− 1 ≤ bg−1c(m) ∧ c′ · kbg

−1c(m) ≤ f(m)

which implies:

∃m0, c, c
′ > 0.∀m ∈ N≥g(m0). c

′ · k d
√

m
c −1≤ f(m)

⇐⇒ ∃m0, c, c
′ > 0.∀m ∈ N≥g(m0).

c′

k
· k d
√

m
c ≤ f(m)

Since c′ > 0 and k > 1, we have c′′ = c′

k > 0 and thus get:

∃m0, c, c
′′ > 0.∀m ∈ N≥g(m0). c

′′ · k d
√

m
c ≤ f(m)

⇐⇒ ∃m0, c, c
′′ > 0.∀m ∈ N≥g(m0). c

′′ · k
d√m
d√c ≤ f(m)
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Since c > 0, we have r = d
√
c > 0 and hence:

∃m0, r, c
′′ > 0.∀m ∈ N≥g(m0). c

′′ · k
d√m
r ≤ f(m)

⇐⇒ ∃m0, r, c
′′ > 0.∀m ∈ N≥g(m0). c

′′ · r
√
k
d
√
m
≤ f(m)

Finally, k > 1 implies b = r
√
k > 1 and we obtain:

∃m0, c
′′ > 0, b > 1.∀m ∈ N≥g(m0). c

′′ · b d
√
m≤ f(m)

=⇒ ∃b > 1. f(m) ∈ Ω(b d
√
m)

Finally, we prove Lemma A.2, which was used in the proof of Theorem 8.12.

Lemma A.2 (Ranges and Domains of Pumping Substitutions). Let there
be two compatible loops with pumping substitutions θ and θ′. For any x ∈
dom(θ), we have

(a) V(xθ) ∩ dom(θ) = {x} and x only occurs once in xθ

(b) V(xθ) ∩ dom(θ′) ⊆ {x}

Proof. The claim (a) follows from Definition 8.2, as ` is linear. For (b), assume
there is a y ∈ V(xθ) ∩ dom(θ′) with y 6= x. Let ρ1, . . . , ρd be all positions
of xθ where y occurs, i.e., (xθ)|ρ1 = . . . = (xθ)|ρd = y. Thus, ρ1, . . . , ρd are
independent positions. Note that

x ∈ dom(θ′). (2)

To prove (2), note that otherwise, we would have (xθ′θ)|ρ1 = (xθ)|ρ1 = y. On
the other hand, we obtain (xθθ′)|ρ1 = (xθ)|ρ1θ

′ = yθ′. Since θ and θ′ commute,
this implies y = yθ′ which is a contradiction to y ∈ dom(θ′).
Since x ∈ dom(θ)∩dom(θ′), by (a) there exist unique positions π 6= ε and ζ 6= ε

such that (xθ)|π = x and (xθ′)|ζ = x. Moreover, (a) implies that applying θ
(resp. θ′) to any variable y 6= x does not introduce occurrences of x. Hence, x
only occurs once in xθ′θ. Since θ and θ′ commute, the same holds for xθθ′.
Hence, (xθ′θ)|ζ.π = x and (xθθ′)|π.ζ = x implies ζ.π = π.ζ. This means that

there is an α ∈ N+ such that π = αn and ζ = αm for n,m ∈ N. (3)

Here, αn stands for the position α.α . . . α where the sequence α is repeated
n times. To see why (3) holds, we prove that (3) follows from ζ.π = π.ζ for
arbitrary positions π and ζ (in this proof, we also allow π = ε or ζ = ε). The
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proof is done by induction on π and ζ. In the induction base, π = ε or ζ = ε

immediately implies (3). In the induction step, we have π 6= ε and ζ 6= ε.
W.l.o.g., let |π| ≤ |ζ|. Then ζ.π = π.ζ implies ζ = π.π′ for some position π′.
Hence, ζ.π = π.ζ now becomes π.π′.π = π.π.π′ and thus, π′.π = π.π′. Since
π 6= ε, the induction hypothesis implies π = αn and π′ = αm for some α ∈ N+

and n,m ∈ N. Thus, ζ = π.π′ = αn+m, which proves (3).
We now perform a case analysis on the relationship between π and ζ.

Case 1. π ≤ ζ
In this case, we have ζ = π.π′ for some position π′. We obtain (xθ′θ)|ζ.ρ1 =
((xθ′)|ζθ)|ρ1 = (xθ)|ρ1 = y. The commutation of θ′ and θ implies that we
also have (xθθ′)|ζ.ρ1 = y. However,

(xθθ′)|ζ.ρ1 = (xθθ′)|π.π′.ρ1 = ((xθ)|πθ′)|π′.ρ1 = (xθ′)|π′.ρ1 .

Note that xθ′ cannot contain the variable y, since y ∈ dom(θ′) by the as-
sumption at the beginning of the proof and V(xθ′) ∩ dom(θ′) = {x} by (2)
and (a).1 Thus, this contradicts (xθθ′)|ζ.ρ1 = y.

Case 2. π 6≤ ζ
By (3), we have ζ = αm and π = αm+k for m > 0 and k > 0 (since ζ 6= ε

and π 6= ε). As y ∈ dom(θ′), by (a) there is a unique position κ such that
yθ′|κ = y. Recall that ρ1, . . . , ρd are the only positions where y occurs in
xθ. Due to (a), ρ1.κ, . . . , ρd.κ are the only positions where y occurs in xθθ′

(since (xθθ′)|ρi.κ = ((xθ)ρiθ′)|κ = (yθ′)|κ = y). Similarly, ζ.ρ1, . . . , ζ.ρd are
the only positions where y occurs in xθ′θ (since (xθ′θ)|ζ.ρi = ((xθ′)|ζθ)|ρi =
(xθ)|ρi = y). As xθθ′ = xθ′θ, the positions ρ1.κ, . . . , ρd.κ are the same as the
positions ζ.ρ1, . . . , ζ.ρd. Let ρ1, . . . , ρd be ordered according to the (total)
lexicographic ordering @ on tuples of numbers (i.e., ρ1 @ ρ2 @ . . . @ ρd).2
Then we also have ρ1.κ @ . . . @ ρd.κ (as the ρi are independent positions)
and ζ.ρ1 @ . . . @ ζ.ρd. This implies ρi.κ = ζ.ρi for all i ∈ {1, . . . , d}, i.e., in
particular ρ1.κ = ζ.ρ1. As ζ = αm, this means ρ1.κ = αm.ρ1.

Let e be the largest number such that ρ1 = αe.ρ′ for some position ρ′. Thus,
α is no prefix of ρ′. We perform a case analysis on the relation between e

and k.

Case 2.1. e ≥ k
Then

y = (xθθ′)|αm.ρ1 = (xθθ′)|αm+e.ρ′ E (xθθ′)|αm+k

= (xθθ′)|π = (xθ)|πθ′ = xθ′.

1 To see why V(xθ′)∩ dom(θ′) = {x} holds, note that we have x ∈ dom(θ′) by (2). Since
(a) holds for the pumping substitution of any decreasing loop, it also holds for θ′. Hence,
x ∈ dom(θ′) implies V(xθ′) ∩ dom(θ′) = {x}.

2I.e., we have (a1...an) @ (b1...bm) if and only if n = 0 and m > 0 or a1 < b1 or a1 = b1
and (a2...an) @ (b2...bm).
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But this contradicts (a), as x ∈ dom(θ′) by (2). Thus, xθ′ cannot contain
y.

Case 2.2. e < k

Note that ρ1.κ = αm.ρ1 implies αe.ρ′.κ = αm.αe.ρ′, i.e., ρ′.κ = αm.ρ′.
Since α is no prefix of ρ′, ρ′ must be a (proper) prefix of α, since m > 0.
Thus, we have ρ′ < α, which implies αm.ρ1 = αm+e.ρ′ < αm+e+1 ≤ αm+k,
as e < k. Hence, we have

y = (xθθ′)|αm.ρ1 . (xθθ′)|αm+k = (xθθ′)|π = (xθ)|πθ′ = xθ′.

This is an immediate contradiction, because the variable y cannot have a
proper subterm.
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B

Examples Mentioned in Experimental Evaluations

In this chapter, we provide the names of those examples which are mentioned
in the experimental evaluations of the presented techniques as their results
are particularly interesting in some sense. Note that these names are of little
interest on their own, such that they were not included in the main part of this
thesis. However, they might be useful for the reproduction and verification of
our experimental results.

265



B.1 Evaluation of Chapter 5

For the following 16 examples, the technique from Chapter 5 successfully de-
duced an upper bound and thereby inferred at least one super-linear polynomial
size bound, whereas CoFloCo failed.

• AG01/#3.16

• AProVE 04/IJCAR 18

• AProVE 04/IJCAR 26a

• AProVE 04/IJCAR 26

• AProVE 07/kabasci02

• AProVE 07/thiemann03

• AProVE 07/thiemann18

• Frederiksen Glenstrup/mul better

• Frederiksen Glenstrup/mul

• Rubio 04/selsort

• SK90/2.12

• Strategy removed AG01/#4.36

• Transformed CSR 04/Ex2 Luc02a L

• Transformed CSR 04/Ex2 Luc02a Z

• Transformed CSR 04/ExSec11 1 Luc02a L

• Transformed CSR 04/ExSec11 1 Luc02a Z

In the following 8 cases, the technique from Chapter 5 deduced an exponential
upper bound and at least one exponential size bound, whereas CoFloCo failed.

• SK90/2.15

• SK90/2.21

• SK90/2.24

• SK90/4.05

• SK90/4.10

• Transformed CSR 04/Ex1 Luc02b Z

• Transformed CSR 04/Ex4 Zan97 Z

• Transformed CSR 04/Ex7 BLR02 Z
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B.2 Evaluation of Part III

B.2.1 Evaluation of Full Rewriting

In the following 5 cases, the semi-decision procedure from Chapter 10 failed to
prove a constant upper bound and loop detection timed out:

• Transformed CSR 04/LISTUTILITIES complete noand C

• Transformed CSR 04/LISTUTILITIES complete C

• Transformed CSR 04/LISTUTILITIES nokinds noand C

• Transformed CSR 04/LISTUTILITIES complete noand GM

• Transformed CSR 04/OvConsOS complete noand C

The following two examples where both the technique from Chapter 10 and
loop detection failed are non-left-linear.

• SK90/2.61

• Strategy removed mixed 05/ex6

Moreover, both techniques failed for the non-constructor system

Transformed CSR 04/ExIntrod GM99 Z.

Also, both techniques failed for

SK90/4.57,

which has constant runtime complexity, but the semi-decision procedure from
Chapter 10 timed out. Finally,

Transformed CSR 04/LISTUTILITIES nosorts−noand Z

has the following decreasing loop of length 13, which was not found by our
heuristics.

U61(tt, s(x), y, cons(z, zs))
→ U62(tt, activate(s(x)), activate(y), activate(cons(z, zs)))
→3 U62(tt, s(x), y, cons(z, zs))
→ U63(tt, activate(s(x)), activate(y), activate(cons(z, zs)))
→3 U63(tt, s(x), y, cons(z, zs))
→ U64(splitAt(activate(s(x)), activate(cons(z, zs))), activate(y))
→2 U64(splitAt(s(x), cons(z, zs)), activate(y))
→ U64(U61(tt, x, z, activate(zs)), activate(y))
→ U64(U61(tt, x, z, zs), activate(y))
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Experimental Evaluations

The examples with nested recursion where the combination of argument filter-
ing and the induction technique could prove exponential bounds, whereas the
induction technique (standalone) and loop detection failed are:

• AProVE 07/thiemann08

• Rubio 04/nestrec

The semi-decision procedure from Chapter 10 inferred constant upper bounds
for the following 5 examples where all other configurations failed to do so:

• Secret 06 TRS/10

• Secret 06 TRS/4

• SK90/2.59

• SK90/4.51

• Transformed CSR 04/Ex24 GM04 Z

The 6 examples where neither a linear lower nor a constant upper bounds was
proven in our experiments are:

• SK90/2.61

• SK90/4.57

• Strategy removed mixed 05/ex6

• Transformed CSR 04/ExIntrod GM99 Z

• LISTUTILITIES complete noand GM

• Transformed CSR 04/LISTUTILITIES nosorts−noand Z

B.2.2 Evaluation of Innermost Rewriting

In the following 3 cases, the semi-decision procedure from Chapter 10 failed to
prove a constant upper bound and loop detection timed out:

• Frederiksen Others/rematch

• Transformed CSR 04/LISTUTILITIES complete noand C

• Transformed CSR 04/LISTUTILITIES complete noand GM

The following two examples where both the technique from Chapter 10 and
loop detection failed are non-left-linear.

• SK90/2.61
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B.2. Evaluation of Part I I I

• Strategy removed mixed 05/ex6

Moreover, both techniques failed for the following two non-ordinary TRSs:

• Frederiksen Glenstrup/ordered better

• Frederiksen Glenstrup/nolexicord

The example,

Frederiksen Glenstrup/nestdec

contains the rule

dec(cons(nil, cons(x, xs)))→ dec(cons(x, xs))

which gives rise to a decreasing loop by instantiating x with nil, but this loop
was not found by our heuristics. Finally,

Transformed CSR 04/LISTUTILITIES nosorts−noand Z

has a decreasing loop of length 13 (cf. Appendix B.2.1), which was not found
by our heuristics.
As in the case of full rewriting, the examples with nested recursion where the
combination of argument filtering and the induction technique could prove
exponential bounds, whereas the induction technique (standalone) and loop
detection failed are:

• AProVE 07/thiemann08

• Rubio 04/nestrec

The semi-decision procedure from Chapter 10 inferred constant upper bounds
for the following 3 examples where all other configurations failed to do so:

• Secret 06 TRS/4

• SK90/2.59

• SK90/4.51

The 6 examples where neither a linear lower nor a constant upper bounds was
proven in our experiments are:

• Frederiksen Glenstrup/nolexicord

• Frederiksen Glenstrup/ordered better

• SK90/2.61
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• Strategy removed mixed 05/ex6

• Transformed CSR 04/LISTUTILITIES complete noand GM

• Transformed CSR 04/LISTUTILITIES nosorts−noand Z
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Zamalloa, E. Martin-Martin, G. Puebla, and G. Román-Dı́ez. “SACO:
Static Analyzer for Concurrent Objects”. In: TACAS ’14. LNCS 8413.
2014, pp. 562–567.

[7] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. “Cost
Analysis of Object-Oriented Bytecode Programs”. In: TCS 413.1 (2012),
pp. 142–159.

[8] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. “Multi-Dimensional
Rankings, Program Termination, and Complexity Bounds of Flowchart
Programs”. In: SAS ’10. LNCS 6337. 2010, pp. 117–133.

[9] D. E. Alonso-Blas, P. Arenas, and S. Genaim. “Precise Cost Analysis
via Local Reasoning”. In: ATVA ’13. LNCS 8172. 2013, pp. 319–333.

[10] D. E. Alonso-Blas and S. Genaim. “On the Limits of the Classical
Approach to Cost Analysis”. In: SAS ’12. LNCS 7460. 2012, pp. 405–
421.

271



Bibliography

[11] M. Alpuente, S. Escobar, and J. Iborra. “Termination of Narrowing
Revisited”. In: TCS 410.46 (2009), pp. 4608–4625.

[12] T. Arts and J. Giesl. “Termination of Term Rewriting Using Dependency
Pairs”. In: TCS 236.1–2 (2000), pp. 133–178.

[13] M. Avanzini and G. Moser. “Polynomial Path Orders”. In: LMCS 9.4
(2013).

[14] M. Avanzini and G. Moser. “Dependency Pairs and Polynomial Path
Orders”. In: RTA ’09. LNCS 5595. 2009, pp. 48–62.

[15] M. Avanzini and G. Moser. “A Combination Framework for Complexity”.
In: IC 248 (2016), pp. 22–55.

[16] M. Avanzini and G. Moser. “Complexity of Acyclic Term Graph Rewrit-
ing”. In: FSCD ’16. LIPIcs 52. 2016, 10:1–10:18.

[17] M. Avanzini, G. Moser, and M. Schaper. “TCT: Tyrolean Complexity
Tool”. In: TACAS ’16. LNCS 9636. 2016, pp. 407–423.

[18] R. Bagnara, A. Pescetti, A. Zaccagnini, and E. Zaffanella. “PURRS:
Towards Computer Algebra Support for Fully Automatic Worst-Case
Complexity Analysis”. In: CoRR abs/cs/0512056 (2005).

[19] A. M. Ben-Amram and S. Genaim. “Ranking Functions for Linear-
Constraint Loops”. In: Journal of the ACM 61.4 (2014), 26:1–26:55.

[20] KoAT Benchmarks. 2014. url: https://github.com/s- falke/
kittel-koat/tree/master/koat-evaluation/examples (visited on
02/05/2018).

[21] R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács. “ABC: Algebraic
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[115] F. Spoto, F. Mesnard, and É. Payet. “A Termination Analyser for Java
Bytecode Based on Path-Length”. In: ACM TOPLAS 32.3 (2010), 8:1–
8:70.

[116] A. Srikanth, B. Sahin, and W. R. Harris. “Complexity Verification Using
Guided Theorem Enumeration”. In: POPL ’17. 2017, pp. 639–652.

[117] T. Sternagel, A. Middeldorp, and C. Kop. “Complexity of Conditional
Term Rewriting”. In: LMCS 13.1 (2017).
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[119] T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel,
P. Schneider-Kamp, and C. Aschermann. “Automatically Proving Ter-
mination and Memory Safety for Programs with Pointer Arithmetic”.
In: JAR 58.1 (2017), pp. 33–65.

282


	Preface
	Introduction
	Structure of the Thesis
	Rewrite Systems and their Relation to Programming Languages
	Contributions and Publications
	Related Work

	Preliminaries
	Terms and Related Concepts
	Complexity Problems


	Complexity Analysis of Integer Rewrite Systems
	Introduction
	Lower Bounds for Integer Transition Systems
	Program Model
	Estimating the Number of Iterations
	Simplifying ITSs
	Non-Linear ITSs
	Asymptotic Lower Bounds
	Solving Limit Problems via SMT
	Related Work
	Experiments
	Conclusion and Future Work

	Upper Bounds for Recursive Natural Transition Systems
	Program Model
	Size Bounds as Runtime Bounds
	Complexity Bounds for RNTSs
	Related Work
	Experiments
	Conclusion and Future Work


	Complexity Analysis of Term Rewrite Systems
	Introduction
	Preliminaries
	Lower Bounds for Term Rewriting by Loop Detection
	Loop Detection for Linear Bounds
	Loop Detection for Exponential Bounds
	Incompleteness of Loop Detection
	Innermost Decreasing Loops
	Related Work
	Conclusion and Future Work

	Lower Bounds for Term Rewriting by Induction
	From Term Rewriting to Rewrite Lemmas
	Speculating Conjectures
	Proving Conjectures
	Inferring Bounds for Valid Conjectures
	Inferring Bounds for TRSs
	Indefinite Rewrite Lemmas
	Argument Filtering
	Proving Innermost Conjectures
	Induction Technique vs. Loop Detection
	Related Work
	Conclusion and Future Work

	Deciding Constant Upper Bounds
	Constant Upper Bounds via Narrowing
	Constant Bounds for Innermost Rewriting
	Related Work
	Conclusion and Future Work

	Strategy Switching – From Full to Innermost Rewriting and Vice Versa
	Non-Dup Generalized Innermost Rewriting
	Approximating Spareness
	Related Work
	Conclusion and Future Work

	Experiments
	Full Rewriting
	Innermost Rewriting


	Postface
	Conclusion and Outlook
	Missing Proofs
	Examples Mentioned in Experimental Evaluations
	Evaluation of chapter:rnts
	Evaluation of part:trs

	Bibliography
	Publications of the Author


