Automatic Complexity Analysis of Programs

Florian Frohn and Jiirgen Giesl*

LuFG Informatik 2, RWTH Aachen University

1 Introduction

Automated complexity analysis has become an increasingly important subject. Dur-
ing the last years, we improved the power of our tool AProVE [5] w.r.t. complexity
analysis significantly. The keys to these improvements are techniques to prove lower
bounds on the worst-case complexity [2,3], cf. Sect. 2, and transformational tech-
niques [1,4,6] which allow us to reuse existing methods for worst-case upper bounds
for various input languages, cf. Sect. 3.

2 Proving Worst-Case Lower Bounds

Our first technique to prove worst-case lower bounds, the so-called induction tech-
nique [2], operates on term rewrite systems (TRSs). It starts with generalizing
sample rewrite sequences automatically, resulting in conjectures, i.e., finite repre-
sentations of infinite families of rewrite sequences. Then, it proves the validity of
conjectures by induction, resulting in lemmas. The structure of the induction proofs
finally gives rise to a lower bound on the complexity of each lemma. Afterwards
these lemmas can be used to speculate and prove further conjectures.

In [2], we also introduced loop detection, a syntactic criterion to prove linear and
exponential lower bounds. It searches for decreasing loops, a generalization of the
well-known notion of loops which are witnesses for non-termination of TRSs. The
main result is that every TRS with a decreasing loop has at least linear, and every
TRS with multiple compatible decreasing loops has at least exponential complexity.

Since TRSs do not have built-in integers, we also introduced a technique to
prove worst-case lower bounds for integer transition systems (ITSs) [3]. It simplifies
programs with complicated control flow via loop acceleration, i.e., loops are replaced
with cost-annotated straight-line code which has the effect of several loop iterations.
The resulting loop-free programs are suitable to deduce lower bounds automatically.

* Supported by the DFG grant GI 274/6-1 and the Air Force Research Laboratory (AFRL).



FRrROHN, GIESL

3 Transformational Techniques for Upper Bounds

Until recently, AProVE could only analyze the complexity of TRSs assuming an
eager (innermost) evaluation strategy. In order to analyze the complexity of full
rewriting (i.e., assuming a completely unrestricted evaluation strategy), we devel-
oped a sufficient criterion to prove that innermost evaluation is the least efficient
strategy for a given TRS [4]. If it applies, then we can safely use existing techniques
for innermost rewriting to analyze the complexity of full rewriting, since we know
that the worst-case complexity of the TRS is captured by innermost rewriting.

To benefit from recent improvements of complexity analysis techniques for ITSs,
we furthermore developed a complexity-preserving transformation from TRSs to
recursive ITSs (RITSs, an extension of ITSs that allows arbitrary recursion) which
abstracts data structures to their size [6].

Since many tools for ITSs do not support (non-tail) recursion, we also introduced
an approach to analyze RITSs via techniques and tools for standard ITSs [6]. It
analyzes the runtime and the size of the result of non-recursive program parts
independently and abstracts from calls to already analyzed program parts using
the obtained runtime- and size-bounds.

Finally, in [1] we showed that the state of the art for automated complexity
analysis of Java programs can be improved significantly by abstracting objects to
integers using a novel size measure. Afterwards, existing tools are used to analyze
the complexity of the resulting ITSs. In contrast to established measures like path-
length, our measure also takes the size of elements of data structures into account.

4 Conclusion

We discussed novel techniques to infer worst-case lower bounds as well as transfor-
mational techniques to reuse existing approaches for worst-case upper bounds for
different input languages. An example for an application of such techniques is the
DARPA STAC project,’ where AProVE is used to find or to prove the absence of
denial of service and timing vulnerabilities in Java programs. 2

References

(1] F. Frohn and J. Giesl. Complexity Analysis for Java with AProVE. In Proc. iFM ’17, 2017. To appear.

[2] F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Stroder. Lower bounds for runtime complexity of
term rewriting. Journal of Automated Reasoning, 59(1):121-163, 2017.

[3] F. Frohn, M. Naaf, J. Hensel, M. Brockschmidt, and J. Giesl. Lower runtime bounds for integer programs.
In Proc. IJCAR ’16, LNAI 9706, pages 550-567, 2016.

[4] F. Frohn and J. Giesl. Analyzing runtime complexity via innermost runtime complexity. In Proc.
LPAR ’17, EPiC 46, pages 249-268, 2017.

[5] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto, M. Pliicker,

P. Schneider-Kamp, T. Stroder, S. Swiderski, and R. Thiemann. Analyzing program termination and
complexity automatically with AProVE. Journal of Automated Reasoning, 58(1):3-31, 2017.

[6] M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, and J. Giesl. Complexity analysis for term rewriting by
integer transition systems. Proc. FroCoS ’17, 2017. To appear.

I http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
2 http://www.draper.com/news/draper-s-cage-could-spot-code-vulnerable-denial-service-attacks

2


http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
http://www.draper.com/news/draper-s-cage-could-spot-code-vulnerable-denial-service-attacks

	Introduction
	Proving Worst-Case Lower Bounds
	Transformational Techniques for Upper Bounds
	Conclusion
	References

