Analyzing Runtime Complexity via Innermost Runtime Complexity

Florian Frohn¹ Jürgen Giesl¹

¹RWTH Aachen University, Germany

May 11, 2017

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(z,y) & \Leftarrow & \mathsf{times}(x,y) \approx z \end{array}$$

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(z,y) & \Leftarrow & \mathsf{times}(x,y) \approx z \end{array}$$

Goal: Prove upper bound on worst case complexity

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel

"Complexity of Conditional Term Rewriting", LMCS '17

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel "Complexity of Conditional Term Rewriting", LMCS '17

Leading Example \mathcal{R}_{times}

$plus(0, y, \top, x_2)$	\rightarrow	у
$plus(s(x), y, x_1, \top)$	\rightarrow	$s(plus(x, y, \top, \top))$
$times(0, y, \top, x_2)$	\rightarrow	0
times(s(x), y, x ₁ , \top)	\rightarrow	$times_2^1(s(x), y, x_1, times(x, y, \top, \top))$
times ¹ ₂ (s(x), y, x ₁ , z)	\rightarrow	$plus(z, y, \top, \top)$

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel "Complexity of Conditional Term Rewriting", LMCS '17

Leading Example \mathcal{R}_{times}

$plus(0, y, \top, x_2)$	\rightarrow	у
$plus(s(x), y, x_1, \top)$	\rightarrow	$s(plus(x, y, \top, \top))$
$times(0, y, \top, x_2)$	\rightarrow	0
$times(s(x), y, x_1, \top)$	\rightarrow	$times_2^1(s(x), y, x_1, times(x, y, \top, \top))$
$times_2^1(s(x), y, x_1, z)$	\rightarrow	$plus(z, y, \top, \top)$

Let's analyze it using leading tools!

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel "Complexity of Conditional Term Rewriting", LMCS '17

Leading Example \mathcal{R}_{times}

$plus(0, y, \top, x_2)$	\rightarrow	у
$plus(s(x), y, x_1, \top)$	\rightarrow	$s(plus(x, y, \top, \top))$
$times(0, y, \top, x_2)$	\rightarrow	0
times(s(x), y, x ₁ , \top)	\rightarrow	$times_2^1(s(x), y, x_1, times(x, y, \top, \top))$
$times_2^1(s(x), y, x_1, z)$	\rightarrow	$plus(z, y, \top, \top)$

Let's analyze it using leading tools!

• TcT: timeout (60 s)

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel "Complexity of Conditional Term Rewriting", LMCS '17

Leading Example \mathcal{R}_{times}

$plus(0, y, \top, x_2)$	\rightarrow	у
$plus(s(x), y, x_1, \top)$	\rightarrow	$s(plus(x, y, \top, \top))$
$times(0, y, \top, x_2)$		
times (s(x), y, x ₁ , \top)	\rightarrow	$times_2^1(s(x), y, x_1, times(x, y, \top, \top))$
$\operatorname{times}_{2}^{1}(\operatorname{s}(x), y, x_{1}, z)$	\rightarrow	$plus(z, y, \top, \top)$

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel "Complexity of Conditional Term Rewriting", LMCS '17

Leading Example \mathcal{R}_{times}

$plus(0, y, \top, x_2)$	\rightarrow	у
$plus(s(x), y, x_1, \top)$	\rightarrow	$s(plus(x, y, \top, \top))$
$times(0, y, \top, x_2)$	\rightarrow	0
times (s(x), y, x ₁ , \top)	\rightarrow	$times_2^1(s(x), y, x_1, times(x, y, \top, \top))$
$times_2^1(s(x), y, x_1, z)$	\rightarrow	$plus(z, y, \top, \top)$

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel "Complexity of Conditional Term Rewriting", LMCS '17

Leading Example \mathcal{R}_{times}

$plus(0, y, \top, x_2)$	\rightarrow	у
$plus(s(x), y, x_1, \top)$	\rightarrow	$s(plus(x, y, \top, \top))$
$times(0, y, \top, x_2)$	\rightarrow	0
times (s(x), y, x ₁ , \top)	\rightarrow	$times_2^1(s(x), y, x_1, times(x, y, \top, \top))$
$times_2^1(s(x), y, x_1, z)$	\rightarrow	$plus(z, y, \top, \top)$

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel "Complexity of Conditional Term Rewriting", LMCS '17

Leading Example \mathcal{R}_{times}

plus(0, y)	\rightarrow	у
plus(s(x), y)	\rightarrow	$s(\mathbf{plus}(x, y))$
$times(0, y, \top, x_2)$	\rightarrow	0
$times(s(x), y, x_1, \top)$	\rightarrow	$times_2^1(s(x), y, x_1, times(x, y, \top, \top))$
$times_2^1(s(x), y, x_1, z)$	\rightarrow	plus(z, y)

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel "Complexity of Conditional Term Rewriting", LMCS '17

Leading Example \mathcal{R}_{times}

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y,\top,x_2) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y,x_1,\top) & \to & \mathsf{plus}(\mathsf{times}(x,y,\top,\top),y) \end{array}$$

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel "Complexity of Conditional Term Rewriting", LMCS '17

Leading Example \mathcal{R}_{times}

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

Outline

Preliminaries

- rc and irc
- NDG Rewriting

2 Handling Constructor Systems

3 Handling Non-Constructor Systems

• rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t.

- rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t. (A) size of start term bounded by n
 - (B) start term basic

• rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t. (A) size of start term bounded by n(B) start term basic

Example

• **plus**(0, s(0))

• rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t. (A) size of start term bounded by n

(B) start term basic

Example • plus(0, s(0)) <

rc maps n ∈ N to the length of the longest rewrite sequence s.t. (A) size of start term bounded by n (B) start term basic

- plus(0, s(0)) ✓
- plus(0, plus(0, s(0)))

rc maps n ∈ N to the length of the longest rewrite sequence s.t. (A) size of start term bounded by n (B) start term basic

- plus(0, s(0)) ✓
- $plus(0, plus(0, s(0))) \times$

- rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t. (A) size of start term bounded by n
 - (B) start term basic
- irc: similar, but just considers innermost sequences

- plus(0, s(0)) ✓
- $plus(0, plus(0, s(0))) \times$

Outline

Preliminaries

- rc and irc
- NDG Rewriting

2 Handling Constructor Systems

3 Handling Non-Constructor Systems

"Generalized innermost rewriting" (RTA '05)

• Goal: Implement rewriting efficiently

"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently
- Idea: No duplication of nested defined symbols

"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently
- Idea: No duplication of nested defined symbols

Leading Example \mathcal{R}_{times}					
plus(0, y) plus(s(x), y) times(0, y) times(s(x), y)	${\rightarrow}$	$s(\mathbf{plus}(x, y))$			

"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently
- Idea: No duplication of nested defined symbols

Leading Exam	ple	\mathcal{R}_{times}	
times(0, y)	$\stackrel{\rightarrow}{\rightarrow}$	$s(\mathbf{plus}(x, y))$	

Example

• times(s(0), plus(0,0)) $\rightarrow plus(times(0, plus(0,0)), plus(0,0))$

"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently
- Idea: No duplication of nested defined symbols

Leading Exam	ple	\mathcal{R}_{times}	
plus(0, y) plus(s(x), y) times(0, y) times(s(x), y)	$\stackrel{\rightarrow}{\rightarrow}$	$s(\mathbf{plus}(x, y))$	

Example

• times(s(0), plus(0,0)) \rightarrow plus(times(0, plus(0,0)), plus(0,0)) X

"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently
- Idea: No duplication of nested defined symbols

$\begin{array}{rcl} \mbox{Leading Example \mathcal{R}_{times}} \\ \mbox{plus}(0,y) & \rightarrow & y \\ \mbox{plus}(s(x),y) & \rightarrow & s(\mbox{plus}(x,y)) \\ \mbox{times}(0,y) & \rightarrow & 0 \\ \mbox{times}(s(x),y) & \rightarrow & \mbox{plus}(\mbox{times}(x,y),y) \end{array}$

- times(s(0), plus(0,0)) \rightarrow plus(times(0, plus(0,0)), plus(0,0)) X
- $plus(s(0), plus(0, 0)) \rightarrow s(plus(0, plus(0, 0)))$

"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently
- Idea: No duplication of nested defined symbols

$\begin{array}{rcl} \mbox{Leading Example \mathcal{R}_{times}} \\ \mbox{plus}(0,y) & \rightarrow & y \\ \mbox{plus}(s(x),y) & \rightarrow & s(\mbox{plus}(x,y)) \\ \mbox{times}(0,y) & \rightarrow & 0 \\ \mbox{times}(s(x),y) & \rightarrow & \mbox{plus}(\mbox{times}(x,y),y) \end{array}$

- times(s(0), plus(0,0)) \rightarrow plus(times(0, plus(0,0)), plus(0,0)) X
- $plus(s(0), plus(0, 0)) \rightarrow s(plus(0, plus(0, 0))) \checkmark$

NDG rewriting is at least as efficient as innermost rewriting.

NDG rewriting is at least as efficient as innermost rewriting.

 $\curvearrowright\,$ all sequences ndg $\implies\,$ innermost is the worst case

NDG rewriting is at least as efficient as innermost rewriting.

Reminder: rc

rc maps n to the length of the longest rewrite sequence s.t.

(A) size of start term bounded by n

(B) start term basic

 \sim all sequences ndg \implies innermost is the worst case

NDG rewriting is at least as efficient as innermost rewriting.

Reminder: rc

rc maps n to the length of the longest rewrite sequence s.t.

(A) size of start term bounded by n

(B) start term basic

- $\curvearrowright\,$ all sequences ndg $\implies\,$ innermost is the worst case
- \sim all sequences starting with basic terms ndg \implies rc = irc

NDG rewriting is at least as efficient as innermost rewriting.

Reminder: rc

rc maps n to the length of the longest rewrite sequence s.t.

(A) size of start term bounded by n

(B) start term basic

- $\curvearrowright\,$ all sequences ndg $\implies\,$ innermost is the worst case
- \sim all sequences starting with basic terms ndg \implies rc = irc
- \sim Goal: Prove that all sequences starting with basic terms are ndg

NDG rewriting is at least as efficient as innermost rewriting.

Reminder: rc

rc maps n to the length of the longest rewrite sequence s.t.

(A) size of start term bounded by n

(B) start term basic

- $\curvearrowright\,$ all sequences ndg $\implies\,$ innermost is the worst case
- \sim all sequences starting with basic terms ndg \implies rc = irc
- Goal: Prove that all sequences starting with basic terms are ndg Use irc techniques to analyze rc

Outline

Preliminaries

- rc and irc
- NDG Rewriting

2 Handling Constructor Systems

- 3 Handling Non-Constructor Systems
- 4 Experimental Results, Conclusion

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• times(...)

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• times(...)

nesting below plus' first argument

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• times(...)

nesting below plus' first argument

plus(times(x, y), y)

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• **times**(...)

nesting below plus' first argument

 $\mathsf{plus}(\Box, y)$

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• **times**(...)

- nesting below **plus**' first argument
- duplication of times' second argument

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• **times**(...)

- nesting below **plus**' first argument
- duplication of times' second argument

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• **times**(...)

- nesting below **plus**' first argument
- duplication of times' second argument

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• **times**(...)

- nesting below **plus**' first argument
- duplication of times' second argument

 $plus(\Box, y)$ times(s(x), \Box)

• plus(...)

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• **times**(...)

- nesting below **plus**' first argument
- duplication of times' second argument

 $plus(\Box, y)$ times(s(x), \Box)

• plus(...)

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• **times**(...)

• plus(...)

- nesting below plus' first argument
- duplication of times' second argument

 $plus(\Box, y)$ times(s(x), \Box)

 $plus(\Box, y)$

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

- **times**(...)
 - nesting below **plus**' first argument
 - duplication of times' second argument

• plus(...)

• no (further) nesting

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

- **times**(...)
 - nesting below **plus**' first argument
 - duplication of times' second argument
- plus(...)
 - no (further) nesting
 - no duplication

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

- **times**(...)
 - nesting below **plus**' first argument
 - duplication of times' second argument
- plus(...)
 - no (further) nesting
 - no duplication
- $plus(\Box, y)$ and $times(s(x), \Box)$ don't "overlap"

$$\frac{\mathsf{plus}(0,y)}{\mathsf{Reminder}} \rightarrow$$

- tim no duplication of defined symbols
 - \sim innermost rewriting is worst

$$\sim$$
 rc = irc

۲

- \curvearrowright irc techniques applicable for rc
 - no (further) nesting
 - no duplication
- $plus(\Box, y)$ and $times(s(x), \Box)$ don't "overlap"

Representing sets of contexts

C matches D if

Representing sets of contexts

C matches D if • $C[x]\sigma = D$

Representing sets of contexts

- C matches D if
 - $C[x]\sigma = D$
 - \Box in *D* below \Box in *C*

- C matches D if
 - $C[x]\sigma = D$
 - \Box in *D* below \Box in *C*

• $plus(x, \Box)$ does not match $plus(s(\Box), y)$

- C matches D if
 - $C[x]\sigma = D$
 - \Box in *D* below \Box in *C*

```
• plus(\Box, y) matches plus(s(\Box), y)
```


- C matches D if
 - $C[x]\sigma = D$
 - \Box in *D* below \Box in *C*

- $plus(\Box, y)$ matches $plus(s(\Box), y)$
- Intuition: $plus(\Box, y)$ represents "marked" terms

- C matches D if
 - $C[x]\sigma = D$
 - \Box in *D* below \Box in *C*

- $plus(\Box, y)$ matches $plus(s(\Box), y)$
- Intuition: plus(□, y) represents "marked" terms plus(times(x, z), y),

- C matches D if
 - $C[x]\sigma = D$
 - \Box in *D* below \Box in *C*

- $plus(\Box, y)$ matches $plus(s(\Box), y)$
- Intuition: plus(□, y) represents "marked" terms plus(times(x, z), y), plus(s(times(0, 0)), 0), ...

- C matches D if
 - $C[x]\sigma = D$
 - \Box in *D* below \Box in *C*

- $plus(\Box, y)$ matches $plus(s(\Box), y)$
- Intuition: plus(□, y) represents "marked" terms plus(times(x, z), y), plus(s(times(0, 0)), 0), ...

Goal: compute sets of contexts *Dup* and *Def*

- C matches D if
 - $C[x]\sigma = D$
 - \Box in *D* below \Box in *C*

- $plus(\Box, y)$ matches $plus(s(\Box), y)$
- Intuition: plus(□, y) represents "marked" terms plus(times(x, z), y), plus(s(times(0, 0)), 0), ...
- **Goal:** compute sets of contexts Dup and DefDup and Def don't overlap \sim rc = irc

C matches D if

• $C[x]\sigma = D$

• \Box in *D* below \Box in *C*

Overlapping contexts

C and D overlap if both match some E

Example

• $plus(\Box, y)$ matches $plus(s(\Box), y)$

 Intuition: plus(□, y) represents "marked" terms plus(times(x, z), y), plus(s(times(0, 0)), 0), ...

Goal: compute sets of contexts Dup and DefDup and Def don't overlap \sim rc = irc

Leading Example \mathcal{R}_{times}

Example

collect left-hand sides of rules with non-linear right-hand sides

Leading Example \mathcal{R}_{times}

Example

collect left-hand sides of rules with non-linear right-hand sides

Leading Example \mathcal{R}_{times}

Example

- collect left-hand sides of rules with non-linear right-hand sides
- ullet replace occurrences of duplicated variables in left-hand sides with \Box

Leading Example \mathcal{R}_{times}

Example

- collect left-hand sides of rules with non-linear right-hand sides
- ullet replace occurrences of duplicated variables in left-hand sides with \Box

Leading Example \mathcal{R}_{times}

Example

- collect left-hand sides of rules with non-linear right-hand sides
- ullet replace occurrences of duplicated variables in left-hand sides with \Box

Examp	le

Leading Example \mathcal{R}_{times}

The easy one: Computing Dup

Initialization

Example

Leading Example $\mathcal{R}_{\mathsf{times}}$

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \texttt{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

Initialization

• collect right-hand sides with nested defined symbols

Example

Leading Example \mathcal{R}_{times}

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

• collect right-hand sides with nested defined symbols

Example

$$plus(0, y) \rightarrow y$$

$$plus(s(x), y) \rightarrow s(plus(x, y))$$

$$times(0, y) \rightarrow 0$$

$$times(s(x), y) \rightarrow plus(times(x, y), y)$$

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\Box \curvearrowright {\cal C}$

Example

$$plus(0, y) \rightarrow y$$

$$plus(s(x), y) \rightarrow s(plus(x, y))$$

$$times(0, y) \rightarrow 0$$

$$times(s(x), y) \rightarrow plus(times(x, y), y)$$

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\Box \curvearrowright {\cal C}$

Example

Leading Example $\overline{\mathcal{R}}_{times}$

$$plus(0, y) \rightarrow y$$

$$plus(s(x), y) \rightarrow s(plus(x, y))$$

$$times(0, y) \rightarrow 0$$

$$times(s(x), y) \rightarrow plus(times(x, y), y)$$

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\Box \curvearrowright C$

Example

 $\mathsf{plus}(\Box, y)$

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{imes}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\Box \curvearrowright C$
- add $\lfloor C \rfloor$ to *Def*

Leading Example \mathcal{R}_{times}

Example

 $\mathsf{plus}(\Box, y)$

 $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\Box \curvearrowright C$
- add $\lfloor C \rfloor$ to *Def*

Leading Example \mathcal{R}_{times}

Example

 $Def = \{ \lfloor \mathsf{plus}(\Box, y) \rfloor \}$

 $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\Box \curvearrowright C$
- add $\lfloor C \rfloor$ to *Def*

Leading Example \mathcal{R}_{times}

Example

 $Def = \{ \mathsf{plus}(\Box, y) \}$

 $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$

Fixed Point Step	Leading Example \mathcal{R}_{times}
	$\begin{array}{rcl} & plus(0,y) & \to & y \\ & plus(s(x),y) & \to & s(plus(x,y)) \\ & times(0,y) & \to & 0 \\ & times(s(x),y) & \to & plus(times(x,y),y) \end{array}$
	Example • $Def = \{ plus(\Box, y) \}$

Fixed Point Step	Leading Example \mathcal{R}_{times}
• pick a rule $\ell \to r$	$\begin{array}{rcl} & \textbf{plus}(0,y) & \rightarrow & y \\ & \textbf{plus}(s(x),y) & \rightarrow & \textbf{s}(\textbf{plus}(x,y)) \\ & \textbf{times}(0,y) & \rightarrow & 0 \\ & \textbf{times}(\textbf{s}(x),y) & \rightarrow & \textbf{plus}(\textbf{times}(x,y),y) \end{array}$
	Example • $Def = \{ plus(\Box, y) \}$

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \Box
- if $\ell[\Box]$ overlaps with $D \in Def$

Leading Example \mathcal{R}_{times}

 $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$

•
$$Def = {$$
plus (\Box, y) }

•
$$\ell[\Box] = \mathsf{plus}(\mathsf{s}(\Box), y)$$

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \Box
- if $\ell[\Box]$ overlaps with $D \in Def$
- pick a subterm f(...x...) of r

Leading Example \mathcal{R}_{times}

 $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$

•
$$Def = {$$
plus $(\Box, y) }$

•
$$\ell[\Box] = \mathsf{plus}(\mathsf{s}(\Box), y)$$

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \Box
- if $\ell[\Box]$ overlaps with $D \in Def$
- pick a subterm f(...x...) of r

Leading Example \mathcal{R}_{times}

 $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$

•
$$Def = {$$
plus $(\Box, y) }$

•
$$\ell[\Box] = \mathsf{plus}(\mathsf{s}(\Box), y)$$

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \Box
- if $\ell[\Box]$ overlaps with $D \in Def$
- pick a subterm f(...x...) of r
- add $\lfloor f(...\Box..) \rfloor$ to *Def*

Leading Example \mathcal{R}_{times}

 $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$

•
$$Def = {$$
plus $(\Box, y) }$

•
$$\ell[\Box] = \mathsf{plus}(\mathsf{s}(\Box), y)$$

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \Box
- if $\ell[\Box]$ overlaps with $D \in Def$
- pick a subterm f(...x...) of r
- add $\lfloor f(...\Box..) \rfloor$ to *Def*

Leading Example \mathcal{R}_{times}

 $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$

•
$$Def = { plus(\Box, y), \lfloor plus(\Box, y) \rfloor }$$

•
$$\ell[\Box] = \mathsf{plus}(\mathsf{s}(\Box), y)$$

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \Box
- if $\ell[\Box]$ overlaps with $D \in Def$
- pick a subterm f(...x...) of r
- add $\lfloor f(...\Box..) \rfloor$ to *Def*

Leading Example \mathcal{R}_{times}

 $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$

•
$$Def = {$$
plus $(\Box, y),$ plus (\Box, y) $}$

•
$$\ell[\Box] = \mathsf{plus}(\mathsf{s}(\Box), y)$$

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \Box
- if $\ell[\Box]$ overlaps with $D \in Def$
- pick a subterm f(...x...) of r
- add $\lfloor f(...\Box..) \rfloor$ to *Def*

Leading Example \mathcal{R}_{times}

 $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$

•
$$Def = {$$
plus $(\Box, y) }$

•
$$\ell[\Box] = \mathsf{plus}(\mathsf{s}(\Box), y)$$

Fixed Point Step• pick a rule $\ell \to r$ • replace some x in ℓ with \Box • if $\ell[\Box]$ overlaps with $D \in Def$ • pick a subterm f(...x...) of r• add $\lfloor f(...\Box...) \rfloor$ to Def• $Leading Example <math>\mathcal{R}_{times}$ • plus $(0, y) \to y$ • plus $(s(x), y) \to s(plus(x, y))$ • times $(0, y) \to 0$ • times $(s(x), y) \to 0$ • Def• $Leading Example <math>\mathcal{R}_{times}$ • Def• $Def = \{plus(\Box, y)\}$ • $\ell[\Box] = plus(s(\Box), y)$

 $Dup = \{ times(s(x), \Box) \}$ and $Def = \{ plus(\Box, y) \}$ don't overlap \frown rc = irc!

Outline

Preliminaries

- rc and irc
- NDG Rewriting
- 2 Handling Constructor Systems
- 3 Handling Non-Constructor Systems
 - 4 Experimental Results, Conclusion

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \\ \mathsf{plus}(x,\mathsf{plus}(y,z)) & \to & \mathsf{plus}(\mathsf{plus}(x,y),z) \end{array}$$

- $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \\ \mathsf{plus}(x,\mathsf{plus}(y,z)) & \to & \mathsf{plus}(\mathsf{plus}(x,y),z) \end{array}$
 - nested defined symbols only below **plus**'s first argument

- $\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \\ \mathsf{plus}(x,\mathsf{plus}(y,z)) & \to & \mathsf{plus}(\mathsf{plus}(x,y),z) \end{array}$
 - nested defined symbols only below **plus**'s first argument
- \land **plus**(*x*, **plus**(*y*, *z*)) not reachable from basic terms!

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

nested defined symbols only below plus's first argument
 ∧ plus(x, plus(y, z)) not reachable from basic terms!

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

- nested defined symbols only below plus's first argument
- \frown **plus**(*x*, **plus**(*y*, *z*)) not reachable from basic terms!
 - information which defined symbols can be nested often crucial

$$\begin{array}{rcl} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \\ \mathsf{times}(0,y) & \to & 0 \\ \mathsf{times}(\mathsf{s}(x),y) & \to & \mathsf{plus}(\mathsf{times}(x,y),y) \end{array}$$

- nested defined symbols only below plus's first argument
- \frown **plus**(*x*, **plus**(*y*, *z*)) not reachable from basic terms!
 - information which defined symbols can be nested often crucial
- \sim similar fixed point algorithm

TcT	AProVE	TcT preproc	AProVE & TcT
209	270	299	308

TcT	AProVE	TcT preproc	AProVE & TcT
209	270	299	308

• powerful sufficient criterion for rc = irc

TcT	AProVE	TcT preproc	AProVE & TcT
209	270	299	308

- powerful sufficient criterion for rc = irc
- easy to automate

TcT	AProVE	TcT preproc	AProVE & TcT
209	270	299	308

- powerful sufficient criterion for rc = irc
- easy to automate
- $\curvearrowright\,$ future irc techniques applicable for rc

TcT	AProVE	TcT preproc	AProVE & TcT	AProVE++
209	270	299	308	324

- powerful sufficient criterion for rc = irc
- easy to automate
- $\curvearrowright\,$ future irc techniques applicable for rc

TcT	AProVE	TcT preproc	AProVE & TcT	AProVE++
209	270	299	308	324

- powerful sufficient criterion for rc = irc
- easy to automate
- \sim future irc techniques applicable for rc
 - significant improvement of the state of the art