Analyzing Runtime Complexity via Innermost Runtime Complexity

Florian Frohn ${ }^{1}$ Jürgen Gies ${ }^{1}$
${ }^{1}$ RWTH Aachen University, Germany

May 11, 2017

Consider the following MAUDE program...

Example

mod BASIC-NAT is

$$
\begin{array}{lll}
r l & \text { plus } & 0 \\
r & Y & Y \\
r l & \text { plus } & s(X) \\
r & \Rightarrow \text { times } 0 & Y \Rightarrow 0 \\
r l & \\
\text { crl times } & (X) Y \Rightarrow \text { plus } Z Y \text { if times } X Y \Rightarrow Z
\end{array}
$$ endm

... which can be seen as a Conditional TRS...

Example

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(z, y) \quad \Leftarrow \operatorname{times}(x, y) \approx z
\end{aligned}
$$

...which can be seen as a Conditional TRS...

Example

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(z, y) \quad \Leftarrow \operatorname{times}(x, y) \approx z
\end{aligned}
$$

Goal: Prove upper bound on worst case complexity

...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel
"Complexity of Conditional Term Rewriting", LMCS '17

...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel
"Complexity of Conditional Term Rewriting", LMCS '17

Leading Example $\mathcal{R}_{\text {times }}$

$$
\text { plus }\left(0, y, \top, x_{2}\right) \rightarrow y
$$

$$
\operatorname{plus}\left(\mathrm{s}(x), y, x_{1}, \top\right) \rightarrow \mathrm{s}(\operatorname{plus}(x, y, \top, \top))
$$

$$
\operatorname{times}\left(0, y, \top, x_{2}\right) \rightarrow 0
$$

$\boldsymbol{t i m e s}\left(\mathrm{s}(x), y, x_{1}, \top\right) \rightarrow \operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, \boldsymbol{\operatorname { t i m e s }}(x, y, \top, \top)\right)$
$\operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, z\right) \rightarrow \operatorname{plus}(z, y, \top, \top)$

...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel
"Complexity of Conditional Term Rewriting", LMCS '17

Leading Example $\mathcal{R}_{\text {times }}$

$$
\operatorname{plus}\left(0, y, \top, x_{2}\right) \rightarrow y
$$

$$
\operatorname{plus}\left(\mathrm{s}(x), y, x_{1}, \top\right) \rightarrow \mathrm{s}(\operatorname{plus}(x, y, \top, \top))
$$

$$
\operatorname{times}\left(0, y, \top, x_{2}\right) \rightarrow 0
$$

$\boldsymbol{\operatorname { t i m e s }}\left(\mathrm{s}(x), y, x_{1}, \top\right) \rightarrow \operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, \boldsymbol{\operatorname { t i m e s }}(x, y, \top, \top)\right)$
$\operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, z\right) \rightarrow \operatorname{plus}(z, y, \top, \top)$

Let's analyze it using leading tools!

...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel
"Complexity of Conditional Term Rewriting", LMCS '17

Leading Example $\mathcal{R}_{\text {times }}$

$$
\text { plus }\left(0, y, \top, x_{2}\right) \rightarrow y
$$

$$
\operatorname{plus}\left(\mathrm{s}(x), y, x_{1}, \top\right) \rightarrow \mathrm{s}(\operatorname{plus}(x, y, \top, \top))
$$

$$
\operatorname{times}\left(0, y, \top, x_{2}\right) \rightarrow 0
$$

$\boldsymbol{\operatorname { t i m e s }}\left(\mathrm{s}(x), y, x_{1}, \top\right) \rightarrow \operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, \boldsymbol{\operatorname { t i m e s }}(x, y, \top, \top)\right)$
$\operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, z\right) \rightarrow \operatorname{plus}(z, y, \top, \top)$

Let's analyze it using leading tools!

- TcT: timeout (60 s)

...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel
"Complexity of Conditional Term Rewriting", LMCS '17

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}\left(0, y, \top, x_{2}\right) & \rightarrow y \\
\operatorname{plus}\left(\mathrm{~s}(x), y, x_{1}, \top\right) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y, \top, \top)) \\
\operatorname{times}\left(0, y, \top, x_{2}\right) & \rightarrow 0 \\
\operatorname{times}\left(\mathrm{~s}(x), y, x_{1}, \top\right) & \rightarrow \operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, \boldsymbol{\operatorname { t i m e s }}(x, y, \top, \top)\right) \\
\operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, z\right) & \rightarrow \operatorname{plus}(z, y, \top, \top)
\end{aligned}
$$

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel
"Complexity of Conditional Term Rewriting", LMCS '17

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}\left(0, y, \top, x_{2}\right) & \rightarrow y \\
\operatorname{plus}\left(\mathrm{~s}(x), y, x_{1}, \top\right) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y, \top, \top)) \\
\operatorname{times}\left(0, y, \top, x_{2}\right) & \rightarrow 0 \\
\operatorname{times}\left(\mathrm{~s}(x), y, x_{1}, \top\right) & \rightarrow \operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, \boldsymbol{\operatorname { t i m e s }}(x, y, \top, \top)\right) \\
\operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, z\right) & \rightarrow \operatorname{plus}(z, y, \top, \top)
\end{aligned}
$$

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

But: $\mathcal{O}\left(n^{3}\right)$ for innermost rewriting - can we exploit that?

...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel
"Complexity of Conditional Term Rewriting", LMCS '17

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}\left(0, y, \top, x_{2}\right) & \rightarrow y \\
\operatorname{plus}\left(\mathrm{~s}(x), y, x_{1}, \top\right) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y, \top, \top)) \\
\operatorname{times}\left(0, y, \top, x_{2}\right) & \rightarrow 0 \\
\operatorname{times}\left(\mathrm{~s}(x), y, x_{1}, \top\right) & \rightarrow \operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, \boldsymbol{\operatorname { t i m e s }}(x, y, \top, \top)\right) \\
\operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, z\right) & \rightarrow \operatorname{plus}(z, y, \top, \top)
\end{aligned}
$$

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

But: $\mathcal{O}\left(n^{3}\right)$ for innermost rewriting - can we exploit that?

...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel
"Complexity of Conditional Term Rewriting", LMCS '17

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\boldsymbol{p l u s}(x, y)) \\
\operatorname{times}\left(0, y, \top, x_{2}\right) & \rightarrow 0 \\
\operatorname{times}\left(\mathrm{~s}(x), y, x_{1}, \top\right) & \rightarrow \operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, \boldsymbol{\operatorname { t i m e s }}(x, y, \top, \top)\right) \\
\operatorname{times}_{2}^{1}\left(\mathrm{~s}(x), y, x_{1}, z\right) & \rightarrow \operatorname{plus}(z, y)
\end{aligned}
$$

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

But: $\mathcal{O}\left(n^{3}\right)$ for innermost rewriting - can we exploit that?

...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel
"Complexity of Conditional Term Rewriting", LMCS '17

Leading Example $\mathcal{R}_{\text {times }}$

```
            plus( \(0, y\) ) \(\rightarrow y\)
            plus(s \((x), y) \rightarrow \mathrm{s}(\) plus \((x, y))\)
    \(\operatorname{times}\left(0, y, \top, x_{2}\right) \rightarrow 0\)
times \(\left(\mathrm{s}(x), y, x_{1}, \top\right) \rightarrow \operatorname{plus}(\operatorname{times}(x, y, \top, \top), y)\)
```

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

But: $\mathcal{O}\left(n^{3}\right)$ for innermost rewriting - can we exploit that?

...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel
"Complexity of Conditional Term Rewriting", LMCS '17

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Let's analyze it using leading tools!

- TcT: timeout (60 s)
- AProVE: full rewriting not supported

But: $\mathcal{O}\left(n^{3}\right)$ for innermost rewriting - can we exploit that?

Outline

(1) Preliminaries

- rc and irc
- NDG Rewriting
(2) Handling Constructor Systems
(3) Handling Non-Constructor Systems

4 Experimental Results, Conclusion

rc and irc

- rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t.

rc and irc

- rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t.
(A) size of start term bounded by n
(B) start term basic

re and irc

- rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t.
(A) size of start term bounded by n
(B) start term basic

Example

- plus $(0, s(0))$

re and irc

- rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t.
(A) size of start term bounded by n
(B) start term basic

Example

- plus(0, s(0)) \downarrow
- rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t.
(A) size of start term bounded by n
(B) start term basic

Example

- plus(0, s(0)) \downarrow
- plus(0, plus(0, $s(0))$)
- rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t.
(A) size of start term bounded by n
(B) start term basic

Example

- plus(0, s(0)) \downarrow
- plus(0, plus(0,s(0)))X
- rc maps $n \in \mathbb{N}$ to the length of the longest rewrite sequence s.t.
(A) size of start term bounded by n
(B) start term basic
- irc: similar, but just considers innermost sequences

Example

- plus(0, s(0))
- plus(0, plus(0,s(0)))X

Outline

(1) Preliminaries

- rc and irc
- NDG Rewriting
(2) Handling Constructor Systems
(3) Handling Non-Constructor Systems

4 Experimental Results, Conclusion

NDG Rewriting

By Jaco van de Pol and Hans Zantema:
"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently

NDG Rewriting

By Jaco van de Pol and Hans Zantema:
"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently
- Idea: No duplication of nested defined symbols

NDG Rewriting

By Jaco van de Pol and Hans Zantema:
"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently
- Idea: No duplication of nested defined symbols

NDG Rewriting

By Jaco van de Pol and Hans Zantema:
"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

- Idea: No duplication of nested defined symbols

Example

- times(s(0), plus $(0,0)) \rightarrow$ plus(times $(0$, plus $(0,0))$, plus $(0,0))$

NDG Rewriting

By Jaco van de Pol and Hans Zantema:
"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus(s }(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \text { plus }(\operatorname{times}(x, y), y)
\end{aligned}
$$

- Idea: No duplication of nested defined symbols

Example

- times(s(0), plus $(0,0)) \rightarrow$ plus(times $(0$, plus $(0,0)), \operatorname{plus}(0,0)) \boldsymbol{x}$

NDG Rewriting

By Jaco van de Pol and Hans Zantema:
"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently
- Idea: No duplication of nested defined symbols

Example

- times(s(0), plus $(0,0)) \rightarrow$ plus(times $(0$, plus $(0,0))$, plus $(0,0)) \boldsymbol{x}$
- plus(s(0), plus $(0,0)) \rightarrow s($ plus $(0, \operatorname{plus}(0,0)))$

NDG Rewriting

By Jaco van de Pol and Hans Zantema:
"Generalized innermost rewriting" (RTA '05)

- Goal: Implement rewriting efficiently
- Idea: No duplication of nested defined symbols

Example

- times(s(0), plus $(0,0)) \rightarrow$ plus(times $(0$, plus $(0,0))$, plus $(0,0)) \boldsymbol{x}$
- plus(s(0), plus $(0,0)) \rightarrow s($ plus $(0, \operatorname{plus}(0,0)))$

NDG Rewriting is cheap!

Theorem (Pol et. al, RTA '05)
NDG rewriting is at least as efficient as innermost rewriting.

NDG Rewriting is cheap!

Theorem (Pol et. al, RTA '05)
NDG rewriting is at least as efficient as innermost rewriting.
all sequences ndg \Longrightarrow innermost is the worst case

NDG Rewriting is cheap!

Theorem (Pol et. al, RTA '05)

 NDG rewriting is at least as efficient as innermost rewriting.
Reminder: rc

rc maps n to the length of the longest rewrite sequence s.t.
(A) size of start term bounded by n
(B) start term basic
all sequences ndg \Longrightarrow innermost is the worst case

NDG Rewriting is cheap!

Theorem (Pol et. al, RTA '05)

 NDG rewriting is at least as efficient as innermost rewriting.
Reminder: rc

rc maps n to the length of the longest rewrite sequence s.t.
(A) size of start term bounded by n
(B) start term basic
all sequences ndg \Longrightarrow innermost is the worst case all sequences starting with basic terms ndg $\Longrightarrow \mathrm{rc}=\mathrm{irc}$

NDG Rewriting is cheap!

Theorem (Pol et. al, RTA '05)

NDG rewriting is at least as efficient as innermost rewriting.

Reminder: rc

rc maps n to the length of the longest rewrite sequence s.t.
(A) size of start term bounded by n
(B) start term basic
\curvearrowright all sequences ndg \Longrightarrow innermost is the worst case all sequences starting with basic terms ndg $\Longrightarrow \mathrm{rc}=\mathrm{irc}$
Goal: Prove that all sequences starting with basic terms are ndg

NDG Rewriting is cheap!

Theorem (Pol et. al, RTA '05)

NDG rewriting is at least as efficient as innermost rewriting.

Reminder: rc

rc maps n to the length of the longest rewrite sequence s.t.
(A) size of start term bounded by n
(B) start term basic
all sequences ndg \Longrightarrow innermost is the worst case all sequences starting with basic terms ndg $\Longrightarrow \mathrm{rc}=\mathrm{irc}$
Goal: Prove that all sequences starting with basic terms are ndg Use irc techniques to analyze rc

Outline

(1) Preliminaries

- rc and irc
- NDG Rewriting
(2) Handling Constructor Systems

(3) Handling Non-Constructor Systems

4) Experimental Results, Conclusion

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

 plus $(0, y) \rightarrow y$plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus $(\operatorname{times}(x, y), y)$

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

plus $(0, y) \rightarrow y$

plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus $(\operatorname{times}(x, y), y)$

- times(...)

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

 plus $(0, y) \rightarrow y$plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

plus $(0, y) \rightarrow y$

plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

 plus $(0, y) \rightarrow y$plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

plus $(0, y) \rightarrow y$

plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)$

- times(...)
- nesting below plus' first argument plus($\square, y)$
- duplication of times' second argument

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

$$
\operatorname{plus}(0, y) \rightarrow y
$$

plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument
- duplication of times' second argument
plus($\square, y)$
times(s(x),y)

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

plus $(0, y) \rightarrow y$

plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument
- duplication of times' second argument
plus($\square, y)$
times(s($x), \square)$

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

$$
\operatorname{plus}(0, y) \rightarrow y
$$

plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument
- duplication of times' second argument
plus($\square, y)$
times(s($x), \square)$
- plus(...)

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

plus $(0, y) \rightarrow y$

plus(s($x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument
- duplication of times' second argument
plus($\square, y)$
times(s($x), \square)$
- plus(...)

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

plus $(0, y) \rightarrow y$

plus(s $(x), y) \rightarrow \mathbf{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument
- duplication of times' second argument
- plus(...)
plus($\square, y)$ times(s($x), \square)$
plus($\square, y)$

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

plus $(0, y) \rightarrow y$
plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument
- duplication of times' second argument
plus($\square, y)$
$\operatorname{times}(\mathrm{s}(x), \square)$
- plus(...)
- no (further) nesting

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

plus $(0, y) \rightarrow y$
plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument
- duplication of times' second argument
plus($\square, y)$
times(s $(x), \square)$
- plus(...)
- no (further) nesting
- no duplication

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

plus($0, y$) $\rightarrow y$
plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

- times(...)
- nesting below plus' first argument
- duplication of times' second argument
plus($\square, y)$ times(s $(x), \square)$
- plus(...)
- no (further) nesting
- no duplication
- plus (\square, y) and times $(\mathrm{s}(x), \square)$ don't "overlap"

"Proving" ndg-ness by hand

Leading Example $\mathcal{R}_{\text {times }}$

plus $(0, y) \rightarrow y$
Reminder
\curvearrowright innermost rewriting is worst
rc $=$ irc
irc techniques applicable for rc
plus(\square, y)
times(s(x), $\square)$

- no (further) nesting
- no duplication
- plus (\square, y) and times $(\mathrm{s}(x), \square)$ don't "overlap"

Proving ndg-ness automatically

Representing sets of contexts
C matches D if

Proving ndg-ness automatically

Representing sets of contexts
C matches D if

- $C[x] \sigma=D$

Proving ndg-ness automatically

Representing sets of contexts
C matches D if

- $C[x] \sigma=D$
- \square in D below \square in C

Proving ndg-ness automatically

Representing sets of contexts

C matches D if

- $C[x] \sigma=D$
- \square in D below \square in C

Example

- plus (x, \square) does not match plus(s($\square), y)$

Proving ndg-ness automatically

Representing sets of contexts

C matches D if

- $C[x] \sigma=D$
- \square in D below \square in C

Example

- plus (\square, y) matches plus(s($\square), y)$

Proving ndg-ness automatically

Representing sets of contexts

C matches D if

- $C[x] \sigma=D$
- \square in D below \square in C

Example

- plus($\square, y)$ matches plus(s($\square), y)$
- Intuition: plus($\square, y)$ represents "marked" terms

Proving ndg-ness automatically

Representing sets of contexts

C matches D if

- $C[x] \sigma=D$
- \square in D below \square in C

Example

- plus($\square, y)$ matches plus(s($\square), y)$
- Intuition: plus($\square, y)$ represents "marked" terms plus(times $(x, z), y)$,

Proving ndg-ness automatically

Representing sets of contexts

C matches D if

- $C[x] \sigma=D$
- \square in D below \square in C

Example

- plus($\square, y)$ matches plus(s($\square), y)$
- Intuition: plus($\square, y)$ represents "marked" terms plus(times $(x, z), y)$, plus(s(times $(0,0)), 0), \ldots$

Proving ndg-ness automatically

Representing sets of contexts

C matches D if

- $C[x] \sigma=D$
- \square in D below \square in C

Example

- plus($\square, y)$ matches plus(s($\square), y)$
- Intuition: plus (\square, y) represents "marked" terms plus(times $(x, z), y)$, plus(s(times $(0,0)), 0), \ldots$

Goal: compute sets of contexts Dup and Def

Proving ndg-ness automatically

Representing sets of contexts

C matches D if

- $C[x] \sigma=D$
- \square in D below \square in C

Example

- plus($\square, y)$ matches plus(s($\square), y)$
- Intuition: plus (\square, y) represents "marked" terms plus(times $(x, z), y)$, plus(s(times $(0,0)), 0), \ldots$

Goal: compute sets of contexts Dup and Def Dup and Def don't overlap $\curvearrowright \mathrm{rc}=$ irc

Proving ndg-ness automatically

Representing sets of contexts

C matches D if

- $C[x] \sigma=D$
- \square in D below \square in C

Overlapping contexts

C and D overlap if both match some E

Example

- plus($\square, y)$ matches plus(s($\square), y)$
- Intuition: plus (\square, y) represents "marked" terms plus(times $(x, z), y)$, plus(s(times $(0,0)), 0), \ldots$

Goal: compute sets of contexts Dup and Def Dup and Def don't overlap $\curvearrowright \mathrm{rc}=$ irc

The easy one: Computing Dup

Algorithm

Leading Example $\mathcal{R}_{\text {times }}$

Example

 plus($0, y$) $\rightarrow y$plus(s $(x), y) \rightarrow \mathbf{s}($ plus $(x, y))$ $\operatorname{times}(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus $(\operatorname{times}(x, y), y)$

The easy one: Computing Dup

Algorithm

- collect left-hand sides of rules with non-linear right-hand sides

Example

Leading Example $\mathcal{R}_{\text {times }}$

plus $(0, y) \rightarrow y$
plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus $(\operatorname{times}(x, y), y)$

The easy one: Computing Dup

Algorithm

- collect left-hand sides of rules with non-linear right-hand sides

Example

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(s(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

The easy one: Computing Dup

Algorithm

- collect left-hand sides of rules with non-linear right-hand sides
- replace occurrences of duplicated variables in left-hand sides with \square

Leading Example $\mathcal{R}_{\text {times }}$

Example

 plus $(0, y) \rightarrow y$ plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$ times $(0, y) \rightarrow 0$ times(s $(x), y) \rightarrow$ plus $(\operatorname{times}(x, y), y)$
The easy one: Computing Dup

Algorithm

- collect left-hand sides of rules with non-linear right-hand sides
- replace occurrences of duplicated variables in left-hand sides with \square

Leading Example $\mathcal{R}_{\text {times }}$

Example

 plus $(0, y) \rightarrow y$ plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$ times $(0, y) \rightarrow 0$ times(s $(x), y) \rightarrow$ plus $(\operatorname{times}(x, y), y)$
The easy one: Computing Dup

Algorithm

- collect left-hand sides of rules with non-linear right-hand sides
- replace occurrences of duplicated variables in left-hand sides with \square

Leading Example $\mathcal{R}_{\text {times }}$

```
Example
Dup = {times(s(x),\square)}
```

plus $(0, y) \rightarrow y$
plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$ $\operatorname{times}(0, y) \rightarrow 0$ $\operatorname{times}(\mathrm{s}(x), y) \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)$

The easy one: Computing Dup

Reminder

Dup and Def don't overlap

Algorithm

- collect left-har
- replace occurrt
\curvearrowright no duplication of defined symbols rc = irc irc techniques applicable for rc

Example

Dup $=\{\boldsymbol{t i m e s}(\mathrm{s}(x), \square)\}$


```
    plus(s(x),y) }->\mathrm{ s(plus(x,y))
    times(0,y) -> 0
times(s(x),y) }->\mathrm{ plus(times(x,y),y)
```


The hard one: Computing Def

Initialization

Leading Example $\mathcal{R}_{\text {times }}$

Example

plus $(0, y) \rightarrow y$
plus $(\mathrm{s}(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

The hard one: Computing Def

Initialization

- collect right-hand sides with nested defined symbols

Leading Example $\mathcal{R}_{\text {times }}$

Example

plus $(0, y) \rightarrow y$
plus $(\mathrm{s}(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

The hard one: Computing Def

Initialization

- collect right-hand sides with nested defined symbols

Leading Example $\mathcal{R}_{\text {times }}$

Example

plus $(0, y) \rightarrow y$
plus $(\mathrm{s}(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

The hard one: Computing Def

Initialization

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\square \curvearrowright C$

Leading Example $\mathcal{R}_{\text {times }}$

Example

plus $(0, y) \rightarrow y$
plus $(\mathrm{s}(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

The hard one: Computing Def

Initialization

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\square \curvearrowright C$

Leading Example $\mathcal{R}_{\text {times }}$

Example

plus $(0, y) \rightarrow y$
plus $(\mathrm{s}(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

The hard one: Computing Def

Initialization

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\square \curvearrowright C$

Leading Example $\mathcal{R}_{\text {times }}$

Example

$$
\text { plus(} \square, y)
$$

plus $(\mathrm{s}(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus(times $(x, y), y)$

The hard one: Computing Def

Initialization

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\square \curvearrowright C$
- add 【C】 to Def

Leading Example $\mathcal{R}_{\text {times }}$

Example

$$
\text { plus(} \square, y)
$$

plus $(0, y) \rightarrow y$
plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus $(\operatorname{times}(x, y), y)$

The hard one: Computing Def

Initialization

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\square \curvearrowright C$
- add 【C】 to Def

Leading Example $\mathcal{R}_{\text {times }}$

Example

Def $=\{\lfloor\boldsymbol{p l u s}(\square, y)\rfloor\}$
plus $(0, y) \rightarrow y$
plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus $(\operatorname{times}(x, y), y)$

The hard one: Computing Def

Initialization

- collect right-hand sides with nested defined symbols
- replace nested defined symbols with $\square \curvearrowright C$
- add 【C】 to Def

Leading Example $\mathcal{R}_{\text {times }}$

Example

$\operatorname{Def}=\{\boldsymbol{p l u s}(\square, y)\}$
plus $(0, y) \rightarrow y$
plus(s $(x), y) \rightarrow \mathrm{s}($ plus $(x, y))$
times $(0, y) \rightarrow 0$
times(s $(x), y) \rightarrow$ plus $(\operatorname{times}(x, y), y)$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(s(x), y) & \rightarrow s(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(s(x), y) & \rightarrow \text { plus }(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- $\operatorname{Def}=\{\boldsymbol{p l u s}(\square, y)\}$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- Def $=\{\boldsymbol{p l u s}(\square, y)\}$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(s(x), y) & \rightarrow s(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(s(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- Def $=\{\boldsymbol{p l u s}(\square, y)\}$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- $\operatorname{Def}=\{\boldsymbol{p l u s}(\square, y)\}$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- $\operatorname{Def}=\{\boldsymbol{p l u s}(\square, y)\}$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- Def $=\{\boldsymbol{p l u s}(\square, y)\}$
- $\ell[\square]=\operatorname{plus}(\mathrm{s}(\square), y)$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square
- if $\ell[\square]$ overlaps with $D \in \operatorname{Def}$

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- $\operatorname{Def}=\{\boldsymbol{p l u s}(\square, y)\}$
- $\ell[\square]=\operatorname{plus}(\mathrm{s}(\square), y)$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square
- if $\ell[\square]$ overlaps with $D \in \operatorname{Def}$
- pick a subterm $\mathbf{f}(\ldots x \ldots)$ of r

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- $\operatorname{Def}=\{\boldsymbol{p l u s}(\square, y)\}$
- $\ell[\square]=\operatorname{plus}(\mathrm{s}(\square), y)$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square
- if $\ell[\square]$ overlaps with $D \in \operatorname{Def}$
- pick a subterm $\mathbf{f}(\ldots x \ldots)$ of r

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- $\operatorname{Def}=\{\boldsymbol{p l u s}(\square, y)\}$
- $\ell[\square]=\operatorname{plus}(\mathrm{s}(\square), y)$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square
- if $\ell[\square]$ overlaps with $D \in \operatorname{Def}$
- pick a subterm $\mathbf{f}(\ldots x \ldots)$ of r
- add $\lfloor\mathbf{f}(\ldots \square \ldots)\rfloor$ to Def

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- Def $=\{\boldsymbol{p l u s}(\square, y)\}$
- $\ell[\square]=\operatorname{plus}(\mathrm{s}(\square), y)$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square
- if $\ell[\square]$ overlaps with $D \in \operatorname{Def}$
- pick a subterm $\mathbf{f}(\ldots x \ldots)$ of r
- add $\lfloor\mathbf{f}(\ldots \square \ldots)\rfloor$ to Def

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- Def $=\{\boldsymbol{p l u s}(\square, y),\lfloor\mathbf{p l u s}(\square, y)\rfloor\}$
- $\ell[\square]=\operatorname{plus}(\mathrm{s}(\square), y)$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square
- if $\ell[\square]$ overlaps with $D \in \operatorname{Def}$
- pick a subterm $\mathbf{f}(\ldots x \ldots)$ of r
- add $\lfloor\mathbf{f}(\ldots \square \ldots)\rfloor$ to Def

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- $\operatorname{Def}=\{\boldsymbol{p l u s}(\square, y), \operatorname{plus}(\square, y)\}$
- $\ell[\square]=\operatorname{plus}(\mathrm{s}(\square), y)$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square
- if $\ell[\square]$ overlaps with $D \in \operatorname{Def}$
- pick a subterm $\mathbf{f}(\ldots x \ldots)$ of r
- add $\lfloor\mathbf{f}(\ldots \square \ldots)\rfloor$ to Def

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- Def $=\{\boldsymbol{p l u s}(\square, y)\}$
- $\ell[\square]=\operatorname{plus}(\mathrm{s}(\square), y)$

The hard one: Computing Def

Idea: capture that nested defined symbols may be matched by variables

Fixed Point Step

- pick a rule $\ell \rightarrow r$
- replace some x in ℓ with \square
- if $\ell[\square]$ overlaps with $D \in \operatorname{Def}$
- pick a subterm $\mathbf{f}(\ldots x \ldots)$ of r
- add $\lfloor\mathbf{f}(\ldots \square \ldots)\rfloor$ to Def

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Example

- Def $=\{\boldsymbol{p l u s}(\square, y)\}$
- $\ell[\square]=\operatorname{plus}(\mathrm{s}(\square), y)$

Dup $=\{\boldsymbol{\operatorname { t i m e s }}(\mathrm{s}(x), \square)\}$ and $\operatorname{Def}=\{\boldsymbol{p l u s}(\square, y)\}$ don't overlap $\curvearrowright \mathrm{rc}=\mathrm{irc}!$

Outline

(1) Preliminaries

- rc and irc
- NDG Rewriting
(2) Handling Constructor Systems
(3) Handling Non-Constructor Systems
(4) Experimental Results, Conclusion

Handling Non-Constructor Systems

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

Handling Non-Constructor Systems

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y) \\
\operatorname{plus}(x, \operatorname{plus}(y, z)) & \rightarrow \operatorname{plus}(\operatorname{plus}(x, y), z)
\end{aligned}
$$

Handling Non-Constructor Systems

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y) \\
\operatorname{plus}(x, \operatorname{plus}(y, z)) & \rightarrow \operatorname{plus}(\operatorname{plus}(x, y), z)
\end{aligned}
$$

- nested defined symbols only below plus's first argument

Handling Non-Constructor Systems

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\operatorname{plus}(0, y) & \rightarrow y \\
\operatorname{plus}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y) \\
\operatorname{plus}(x, \operatorname{plus}(y, z)) & \rightarrow \operatorname{plus}(\operatorname{plus}(x, y), z)
\end{aligned}
$$

- nested defined symbols only below plus's first argument plus(x, plus $(y, z))$ not reachable from basic terms!

Handling Non-Constructor Systems

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

- nested defined symbols only below plus's first argument plus(x, plus $(y, z))$ not reachable from basic terms!

Handling Non-Constructor Systems

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

- nested defined symbols only below plus's first argument plus(x, plus $(y, z))$ not reachable from basic terms!
- information which defined symbols can be nested often crucial

Handling Non-Constructor Systems

Leading Example $\mathcal{R}_{\text {times }}$

$$
\begin{aligned}
\text { plus }(0, y) & \rightarrow y \\
\text { plus }(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \\
\operatorname{times}(0, y) & \rightarrow 0 \\
\operatorname{times}(\mathrm{~s}(x), y) & \rightarrow \operatorname{plus}(\operatorname{times}(x, y), y)
\end{aligned}
$$

- nested defined symbols only below plus's first argument plus(x, plus $(y, z))$ not reachable from basic terms!
- information which defined symbols can be nested often crucial
\curvearrowright similar fixed point algorithm

Experimental Results, Conclusion

Experiments on the TPDB:

TcT	AProVE	TcT preproc	AProVE \& TcT
209	270	299	308

Experimental Results, Conclusion

Experiments on the TPDB:

TcT	AProVE	TcT preproc	AProVE \& TcT
209	270	299	308

- powerful sufficient criterion for $\mathrm{rc}=\mathrm{irc}$

Experimental Results, Conclusion

Experiments on the TPDB:

TcT	AProVE	TcT preproc	AProVE \& TcT
209	270	299	308

- powerful sufficient criterion for $\mathrm{rc}=\mathrm{irc}$
- easy to automate

Experimental Results, Conclusion

Experiments on the TPDB:

TcT	AProVE	TcT preproc	AProVE \& TcT
209	270	299	308

- powerful sufficient criterion for $\mathrm{rc}=\mathrm{irc}$
- easy to automate
\curvearrowright future irc techniques applicable for rc

Experimental Results, Conclusion

Experiments on the TPDB:

TcT	AProVE	TcT preproc	AProVE \& TcT	AProVE ++
209	270	299	308	324

- powerful sufficient criterion for $\mathrm{rc}=\mathrm{irc}$
- easy to automate
\curvearrowright future irc techniques applicable for rc

Experimental Results, Conclusion

Experiments on the TPDB:

TcT	AProVE	TcT preproc	AProVE \& TcT	AProVE++
209	270	299	308	324

- powerful sufficient criterion for $\mathrm{rc}=\mathrm{irc}$
- easy to automate
\curvearrowright future irc techniques applicable for rc
- significant improvement of the state of the art

