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Consider the following MAUDE program...

Example

mod BASIC-NAT is
...
rl p l u s 0 Y => Y .
rl p l u s s (X) Y => s ( p l u s X Y) .
rl t i m e s 0 Y => 0 .

crl t i m e s s (X) Y => p l u s Z Y i f t i m e s X Y => Z .
endm



...which can be seen as a Conditional TRS...

Example

plus(0, y) → y
plus(s(x), y) → s(plus(x , y))
times(0, y) → 0

times(s(x), y) → plus(z , y) ⇐ times(x , y) ≈ z

Goal: Prove upper bound on worst case complexity
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...which can be transformed to a standard TRS.

Transformation by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel

“Complexity of Conditional Term Rewriting”, LMCS ’17

Leading Example Rtimes

plus(0, y ,>, x2) → y
plus(s(x), y , x1,>) → s(plus(x , y ,>,>))
times(0, y ,>, x2) → 0

times(s(x), y , x1,>) → times12(s(x), y , x1, times(x , y ,>,>))
times12(s(x), y , x1, z) → plus(z , y ,>,>)

Let’s analyze it using leading tools!

TcT: timeout (60 s)

AProVE: full rewriting not supported

But: O(n3) for innermost rewriting – can we exploit that?
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rc and irc

rc maps n ∈ N to the length of the longest rewrite sequence s.t.

(A) size of start term bounded by n

(B) start term basic

irc: similar, but just considers innermost sequences

Example

plus(0, s(0))

3

plus(0,plus(0, s(0))) 8
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NDG Rewriting

By Jaco van de Pol and Hans Zantema:

“Generalized innermost rewriting” (RTA ’05)

Leading Example Rtimes

plus(0, y) → y
plus(s(x), y) → s(plus(x , y))
times(0, y) → 0

times(s(x), y) → plus(times(x , y), y)

Goal: Implement rewriting efficiently

Idea: No duplication of nested defined symbols

Example

times(s(0),plus(0, 0))→ plus(times(0,plus(0, 0)),plus(0, 0)) 8

plus(s(0),plus(0, 0))→ s(plus(0,plus(0, 0))) 3
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NDG Rewriting is cheap!

Theorem (Pol et. al, RTA ’05)

NDG rewriting is at least as efficient
as innermost rewriting.

Reminder: rc

rc maps n to the length of the longest
rewrite sequence s.t.

(A) size of start term bounded by n

(B) start term basic

y all sequences ndg =⇒ innermost is the worst case

y all sequences starting with basic terms ndg =⇒ rc = irc

y Goal: Prove that all sequences starting with basic terms are ndg

Use irc techniques to analyze rc
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“Proving” ndg-ness by hand

Leading Example Rtimes

plus(0, y) → y
plus(s(x), y) → s(plus(x , y))
times(0, y) → 0

times(s(x), y) → plus(times(x , y), y)

times(...)
nesting below plus’ first argument

duplication of times’ second argument

plus(...)
no (further) nesting

no duplication

plus(�, y) and times(s(x),�) don’t “overlap”
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“Proving” ndg-ness by hand

Leading Example Rtimes

plus(0, y) → y
plus(s(x), y) → s(plus(x , y))
times(0, y) → 0

times(s(x), y) → plus(times(x , y), y)

times(...)
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duplication of times’ second argument times(s(x),�)

plus(...)
no (further) nesting

no duplication

plus(�, y) and times(s(x),�) don’t “overlap”

Reminder
no duplication of defined symbols

y innermost rewriting is worst

y rc = irc

y irc techniques applicable for rc



Proving ndg-ness automatically

Representing sets of contexts

C matches D if

C [x ]σ = D

� in D below � in C

Overlapping contexts

C and D overlap if both match some E

Example

plus(x ,�) does not match plus(s(�), y)

Intuition: plus(�, y) represents “marked” terms

plus(times(x , z), y),
plus(s(times(0, 0)), 0), . . .

Goal: compute sets of contexts Dup and Def
Dup and Def don’t overlap y rc = irc
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Leading Example Rtimes

plus(0, y) → y
plus(s(x), y) → s(plus(x , y))
times(0, y) → 0

times(s(x), y) → plus(times(x , y), y)

plus(x ,plus(y , z)) → plus(plus(x , y), z)

nested defined symbols only below plus’s first argument

y plus(x ,plus(y , z)) not reachable from basic terms!

information which defined symbols can be nested often crucial

y similar fixed point algorithm
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