
Florian Frohn

Automatic Complexity Analysis of Programs
Supervisor: Jürgen Giesl

input size

ru
nt

im
e

Automated Induction Technique

automatically “guess” conjecture
plus(sn(0), sm(0))→ sn+m(0)

prove it via induction
infer lower bound from proof
yΩ(n) RTA ’15

LoAT

adapt ranking func. for lower
bounds y metering func.

x is metering func. for plus
compute resulting variable
values via recurrence solving

y ′ = y + x after x iterations
accelerate loops

plus(x , y)→ plus(0, y +x) | x > 0
yΩ(x) IJCAR ’16

Loop Detection

syntactic criterion for linear &
exponential lower bounds

plus(s(x), y) → plus(x , s(y)) is
a decreasing loop

yΩ(x) JAR ’17

Strategy Switching

goal: analyze complexity w.r.t. unre-
stricted evaluation strategy

prove that eager evaluation is worst
apply techniques for eager evaluation

eager evaluation is worst for plus
yO(x) LPAR ’17

Java → ITS

execute program symbolically
ysymbolic evaluation graph
translate graph to ITS
apply techniques for ITSs

translates J to I
yO(x) iFM ’17

Recursive ITS → ITS

analyze non-recursive sub-ITSs independently
approximate runtime and size of result
replace calls to analyzed program parts with
obtained bounds
currently restricted to N FroCoS ’17

TRS → Recursive ITS

goal: analyze complexity w.r.t. eager evaluation
translate TRS to recursive ITS (RITS) over N
apply techniques for recursive ITSs

translates R to I
yO(x) FroCoS ’17

Term Rewrite System (TRS) R
plus(s(x), y)→ plus(x , s(y))

plus(0, y)→ y

Integer Transition System (ITS) I
plus(x , y)→ plus(x − 1, y + 1) | x > 0
plus(x , y)→ y | x = 0

Java Program J
i n t p lus (i n t x , i n t y) {

wh i le (x > 0) {
x−−; y ++;

}
r e t u r n y ;

}

Key

worst case upper bound
worst case runtime
worst case lower bound

Applications

DARPA STAC program [4]
AProVE [1] and LoAT [3] are crucial parts of the CAGE toolchain [2]
used to find or prove the absence of DoS vulnerabilities in Java programs

[1] AProVE – http://aprove.informatik.rwth-aachen.de
[2] CAGE – http://www.draper.com/news/draper-s-cage-could-spot-code-vulnerable-denial-service-attacks
[3] LoAT – https://github.com/aprove-developers/LoAT
[4] Space/Time Analysis for Cybersecurity (STAC) – https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

