Modular Heap Shape Analysis for Java Programs”

Florian Frohn and Jiirgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract

We report on our ongoing work towards an automatic heap shape analysis for Java programs
in order to approximate the possible forms of sharing and cycles on the heap. Our analysis
is completely modular, i.e., Java methods are analyzed independently and each method is
analyzed only once. Moreover, in contrast to similar analyses, our technique does not only
analyze cyclicity and reachability, but also sharing, i.e., it checks whether two objects may
have a common successor. Finally, our analysis is path-sensitive, i.e., if two objects o and
o’ share, then our analysis approximates which paths of object fields lead from o and o’ to
their common successor. Use-cases for such an analysis include (but are not limited to) the
modularization of termination analysis, complexity analysis, and data-flow analysis.

1 Introduction

Our tool AProVE [3] has been the most powerful fully automatic termination analyzer for Java
programs for many years, as witnessed by the annual termination competition.! Its outstanding
feature is its precise handling of the heap, which is analyzed via symbolic execution using
a rather complex abstract domain [1,4]. To solve the arising search problems, AProVE uses
standard SMT solvers. Recently, AProVE’s termination analysis has been adapted for complexity
analysis of Java programs [2]. This adaption was driven by our project CAGE? with Draper
Inc. and the University of Innsbruck where AProVE analyzes programs with tens of thousands
lines of code. Unsurprisingly, this project revealed bottlenecks w.r.t. the scalability of AProVE’s
current heap shape analysis (HSA). While we can bypass these restrictions by providing method
summaries as additional input [2], a more scalable automatic HSA is desirable.

In Sect. 2, we sketch such an analysis after discussing AProVE’s current heap shape analysis
(which we call HSaprove from now on) and its limitations w.r.t. scalability. Like HSaprove, Our
new analysis HS ., can be used to analyze sharing as well as cyclicity, but in this paper we
focus on sharing for reasons of space. Sect. 3 briefly discusses related work and concludes.

2 An Alternative to AProVE’s Heap Shape Analysis

Like many other HSAs, AProVE represents sets of program states using a symbolic heap and a
mapping from local variables to symbolic references (i.e., pointers to memory locations). To
express information about the heap, it uses predicates over symbolic references [4]:> The points-to

predicate o ENPY expresses that the field f of the object referenced by o stores the reference o,
the may-alias predicate o = o/ means that o and o’ may be equal, and the may-share predicate
0 \/ o states that o and o’ may have a common successor, i.e., some o’ may be reachable from
o0 as well as o' by dereferencing (possibly empty) sequences of fields. The semantics of the empty
set of predicates is that all objects are in disjoint parts of the heap, i.e., sharing and aliasing

*Supported by the DFG grant GI 274/6-1 and the Air Force Research Laboratory (AFRL).
Thttp://termination-portal.org/wiki/Termination_Competition

thtp ://www.draper.com/news/draper-s-cage-could-spot-code-vulnerable-denial-service-attacks
3Here, we omit some predicates for reasons of space.

http://termination-portal.org/wiki/Termination_Competition
http://www.draper.com/news/draper-s-cage-could-spot-code-vulnerable-denial-service-attacks

Modular Heap Shape Analysis for Java Programs F. Frohn and J. Giesl

has to be allowed explicitly using predicates. Note that the points-to predicate means that
some connection must exist, whereas the may-alias and the may-share predicate express that
references may share or alias, i.e., HSaprove simultaneously performs may- and must-analyses.
Consequently, the semantics of HSaprove is rather complicated.

Example 1. Consider a class for lists with the fields value and next. To represent a list

01 with at least two elements whose last value is o3, the predicates {o; Dext, 02,02 \/ 03} can
be used. Note that the connection from os to o3 of the form next*.value cannot be expressed
precisely since the may-share predicate is not path-sensitive. In particular, oo \,/ 03 also allows
paths from os to 0s, i.e., it over-approzimates the connection between os and oz rather coarsely.

The main drawback of HSaprove for scalability is its dependence on the context in which methods
are called (context-sensitivity). So the same method often has to be analyzed several times to
take differences in the calling states into account. This need for context-sensitivity is closely
related to HSaprove’s restricted expressivity. As shown in Ex. 1, HSaprove cannot describe the
effect of many common heap manipulating methods like appending to the end of a list precisely.
Context-sensitivity often allows us to focus on specific cases instead. For example, the result of
appending to the end of a list of known length can be expressed using the points-to predicate.

Hence, the goal of our new analysis HS,¢, is to improve expressivity such that context-
sensitivity can be sacrificed without major regressions w.r.t. precision. To this end, HS,¢, uses
a single path-sensitive predicate o <= o’. Here, 7 and 7 are regular languages over the set F
of all fields in the program (i.e., m,7 C F*). The semantics of 0 —+<- o' is that o and o’ may
only share if o reaches their common successor via a path from 7 and o’ reaches this successor
via a path from 7. (More precisely, if 0.v = o’.w and 0.v" # o’.w’ holds for every prefix v’ of
v and every prefix w’ of w where v # v or w’ # w, then we have v € m and w € 7). Hence,
0258 o and 0 SHE O correspond to HSaprove’s may-share and may-alias predicates.

Since HS,ey does not provide a points-to predicate, it is a pure may-analysis and hence
avoids the complexity that arises from combining may- and must-analyses.

Example 2. With HS .y, the situation in Ex. 1 can be expressed by the predicates {o1 et g 09,

t*.val
0p 22 TR E o3}. The path from oy to oz is described more precisely than in Ez. 1, since

these predicates do not allow paths from o3 to oo anymore. However, they only express that o1’s
field next may store oo, whereas the predicates from Fx. 1 express that it must store og.

Ex. 2 shows that HSaprove and HS 4 are orthogonal in general, but HS ., can describe possible
(as opposed to definite) sharing more precisely than HSaprove, i.€., HS e,y fits our needs w.r.t.

expressivity. This is also true for more complex data structures (e.g., binary trees with the fields

left|right)™.value
value, left, and right, where o %(ﬁ o' expresses that o’ may be an element of

the tree o). However, applying HSr¢, in an interprocedural, context-insensitive setting with
reasonable precision is non-trivial. The reason is that interprocedural program analyses usually
summarize methods using pre- and postconditions. Hence, to ensure that every method is
analyzed at most once, each method has to be analyzed with the most general precondition. For

HS g, this means that we have to add the predicate o T I of for each pair o, 0’ of arguments
of the analyzed method to the initial state. Clearly, this would diminish the precision of HS 4.

Our solution is to analyze a slightly different property than HSaprove and many other similar
analyses. HSaprove analyzes the property “which references may share” for every program
position of the analyzed method m. Clearly, this property is highly context-sensitive, i.e., it
can differ significantly depending on the program state in which m is invoked. Instead, HS g
analyzes the property “which references may share due to side-effects of m”, i.e., it just considers

Modular Heap Shape Analysis for Java Programs F. Frohn and J. Giesl

sharing that has been introduced by the currently analyzed method itself. While this property
is clearly context-insensitive, it coincides with the property analyzed by HSaprove if there is no
sharing in the initial state, as it is the case for the main method of Java programs.

Example 3. Consider a method add that appends a value o' to the end of a list 0. Independently

from the states in which add is called, the property “which references may share when add returns
next”.value

due to side-effects of add” can be approzimated by the predicate 0 ———"%E o
As a consequence, whenever HS ., encounters an invocation of a previously analyzed method m,
it has to incorporate the connections that might be introduced by m into the calling state.

Example 3 (continued). Assume that add is called in a state whose heap is described by

0 XL E o, To construct the state after the invocation of add, HS ey has to incorporate the

next®.value &

. . . " . .
new connection o ——22, o into the predicate 0 ——s<= 0" of the calling state. Since 0"
may be reachable from o via next-pointers, o’ may be inserted behind 0", i.e., o' and o may

. . next® & next™.value ¢ next®.value &
share. Hence, the resulting state is {o ——+ 0", 0 ———« o/, 0" ———¢ 0’}

To infer predicates that approximate the side-effects introduced by methods (with loops or
recursion), HS ey requires techniques for generalization and symbolic reasoning with regular
languages. We developed a library which accomplishes this task and yields promising results.

3 Conclusion

In this paper, we discussed some shortcomings of AProVE’s current heap shape analysis and
sketched an alternative analysis to overcome them. The key idea is to use a path-sensitive
abstract domain to improve expressivity, which in turn allows us to sacrifice context-sensitivity
without major regressions w.r.t. precision. As a result, we obtain a high degree of modularity.
First results with a prototypical implementation are promising.

Apart from AProVE’s previous approach to HSA, the most closely related techniques are [5,0].
However, these approaches are just field-sensitive, i.e., in contrast to our technique they do not
take the order of fields on paths into account. Moreover, they just analyze reachability and
cyclicity, and they rely on a field-insensitive sharing analysis, whereas our sharing analysis is
also field- (and even path-) sensitive. Finally, our approach is orthogonal to separation logic,
which is the base for many pure must-analyses, whereas our analysis is a pure may-analysis.

References

[1] M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated termination proofs for Java programs
with cyclic data. In Proc. CAV ’12, LNCS 7358, pages 105-122, 2012.

[2] F. Frohn and J. Giesl. Complexity Analysis for Java with AProVE. In Proc. iF'M ’17, LNCS, 2017.

[3] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto,
M. Pliicker, P. Schneider-Kamp, T. Stréder, S. Swiderski, and R. Thiemann. Analyzing program
termination and complexity automatically with AProVE. JAR, 58(1):3-31, 2017.

[4] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination analysis of Java
Bytecode by term rewriting. In Proc. RTA ’10, LIPIcs 6, pages 259276, 2010.

[5] E. Scapin and F. Spoto. Field-sensitive unreachability and non-cyclicity analysis. Sci. Comput.
Program., 95:359-375, 2014.

[6] D. Zanardini and S. Genaim. Inference of field-sensitive reachability and cyclicity. ACM Transactions
on Computational Logic, 15(4):33:1-33:41, 2014.

	Introduction
	An Alternative to AProVE's Heap Shape Analysis
	Conclusion

