Loop Detection for Lower Runtime Bounds

Florian Frohn ¹ Jürgen Giesl ¹ Jera Hensel ¹ Cornelius Aschermann ² Thomas Ströder ¹

¹RWTH Aachen University, Germany

²Ruhr University Bochum, Germany

October 20, 2016

- worst case upper bounds
- best case lower bounds
- worst case lower bounds

Why

- tight bounds
- DoS attacks
- side-channel attacks

October 20, 2016 2 / 19

- worst case upper bounds
- best case lower bounds

- worst case upper bounds
- best case lower bounds
- worst case lower bounds

Why

- tight bounds
- DoS attacks
- side-channel attacks

- worst case upper bounds
- best case lower bounds
- worst case lower bounds

Why

- tight bounds
- DoS attacks
- side-channel attacks

- worst case upper bounds
- best case lower bounds
- worst case lower bounds

Why?

- *tight* bounds
- DoS attacks
- side-channel attacks

- worst case upper bounds
- best case lower bounds
- worst case lower bounds

Why?

- *tight* bounds
- DoS attacks
- side-channel attacks

- worst case upper bounds
- best case lower bounds
- worst case lower bounds

Why?

- *tight* bounds
- DoS attacks
- side-channel attacks

Generalizing Loops to prove ...

- Iinear and
- exponential

lower bounds for rc(n).

A First Example... $il(s(x), ys) \rightarrow il(x, cons(x, ys))$ $il(0, ys) \rightarrow ys$

rc(n): Length of longest derivation starting with a basic term of size $m \leq n$

- il(s(0), cons(x, ys)) √
- *il*(*x*, *il*(0, *ys*)) ×

Generalizing Loops to prove ...

- linear and
- exponential

lower bounds for rc(n).

A First Example... $il(s(x), ys) \rightarrow il(x, cons(x, ys))$ $il(0, ys) \rightarrow ys$

rc(n): Length of longest derivation starting with a basic term of size $m \le n$

- il(s(0), cons(x, ys)) √
- *il*(*x*, *il*(0, *ys*)) ×

Generalizing Loops to prove...

- linear and
- exponential

lower bounds for rc(n).

A First Example... $il(s(x), ys) \rightarrow il(x, cons(x, ys))$ $il(0, ys) \rightarrow ys$

rc(n): Length of longest derivation starting with a basic term of size $m \le n$

- il(s(0), cons(x, ys)) √
- *il*(*x*, *il*(0, *ys*)) ×

Generalizing Loops to prove...

- linear and
- exponential

lower bounds for rc(n).

A First Example... $il(s(x), ys) \rightarrow il(x, cons(x, ys))$ $il(0, ys) \rightarrow ys$

 $\operatorname{rc}(n)$: Length of longest derivation starting with a basic term of size $m \leq n$

- il(s(0), cons(x, ys)) √
- *il*(*x*, *il*(0, *ys*)) ×

Generalizing Loops to prove...

- linear and
- exponential

lower bounds for rc(n).

A First Example... $il(s(x), ys) \rightarrow il(x, cons(x, ys))$ $il(0, ys) \rightarrow ys$

 $\operatorname{rc}(n)$: Length of longest derivation starting with a basic term of size $m \leq n$

- il(s(0), cons(x, ys)) √
- *il*(*x*, *il*(0, *ys*)) ×

Generalizing Loops to prove...

- linear and
- exponential

lower bounds for rc(n).

A First Example... $il(s(x), ys) \rightarrow il(x, cons(x, ys))$ $il(0, ys) \rightarrow ys$

rc(n): Length of longest derivation starting with a basic term of size $m \le n$ Basic Terms

- il(s(0), cons(x, ys)) √
- *il*(*x*, *il*(0, *ys*)) ×

Generalizing Loops to prove...

- linear and
- exponential

lower bounds for rc(n).

A First Example... $il(s(x), ys) \rightarrow il(x, cons(x, ys))$ $il(0, ys) \rightarrow ys$

 $\operatorname{rc}(n)$: Length of longest derivation starting with a basic term of size $m \leq n$

- il(s(0), cons(x, ys)) √
- il(x, il(0, ys)) ×

Loops?

$$il(s(x), ys) \rightarrow il(x, cons(x, ys))$$

 $\land il(x, ys) \rightarrow il(s(x), cons(x, ys))$

 $il(x, ys) \rightarrow il(s(x), cons(x, ys)) \rightarrow il(s(s(x)), cons(s(x), cons(x, ys))) \rightarrow \dots$

Loops?

$$il(s(x), ys) \rightarrow il(x, cons(x, ys))$$

 $\land il(x, ys) \rightarrow il(s(x), cons(x, ys))$

 $il(x, ys) \rightarrow il(s(x), cons(x, ys)) \rightarrow il(s(s(x)), cons(s(x), cons(x, ys))) \rightarrow \dots$

Loops?

$$il(s(x), ys) \rightarrow il(x, cons(x, ys))$$

 $\land il(x, ys) \rightarrow il(s(x), cons(x, ys))$

 $il(x, ys) \rightarrow il(s(x), cons(x, ys)) \rightarrow il(s(s(x)), cons(s(x), cons(x, ys))) \rightarrow \dots$

 $il(s(x),ys) \rightarrow il(x,cons(x,ys))$

$$il(x, ys)$$

$$\{x/s(x)\}_{x} \not \xrightarrow{} ys/cons(x, ys)\}$$

$$il(s(x), ys) \rightarrow il(x, cons(x, ys))$$

 $il(s(x),ys) \rightarrow il(x,cons(x,ys))$

$$il(x, ys)$$

$$\{x/s(x)\}_{k} \land ys) \rightarrow il(x, cons(x, ys))$$

$$il(s(x), ys) \rightarrow il(x, cons(x, ys))$$

heta: Pumping Substitution σ : Result Substitution

F. Frohn (RWTH Aachen) Loop Detection for Lower Runtime Bounds

9: Pumping Substitution σ : Result Substitution

F. Frohn (RWTH Aachen)

Loop Detection for Lower Runtime Bounds

 θ : Pumping Substitution

σ: Result Substitution

 $\overline{\ell}$: Base Term

F. Frohn (RWTH Aachen)

Loop Detection for Lower Runtime Bounds

 θ : Pumping Substitution

 σ : Result Substitution

F. Frohn (RWTH Aachen)

Loop Detection for Lower Runtime Bounds

F. Frohn (RWTH Aachen)

Loop Detection for Lower Runtime Bounds

October 20, 2016 5 / 19

$$\begin{array}{c} il(x,ys) \\ {x/s(x)} \\ {x/s(x)} \\ {x'} \\ {ys/cons(x,ys)} \\ il(s(x),ys) \\ \rightarrow il(x,cons(x,ys)) \end{array}$$

 $2\theta^n = il(s^{n+1}(x), ys) \rightarrow il(s^n(x), cons(s^n(x), ys)) \rightarrow ...$

$$\begin{array}{c} & il(x,ys) \\ & \{x/s(x)\}_{k'} & \searrow_{s/cons(x,ys)\}} \\ & il(s(x),ys) & \rightarrow & il(x,cons(x,ys)) \end{array}$$

$$\ell\theta^n = il(s^{n+1}(x), ys) \rightarrow il(s^n(x), cons(s^n(x), ys)) \rightarrow ...$$

$$\begin{array}{c} & il(x,ys) \\ & \{x/s(x)\}_{\mathbf{x}'} & \searrow_{\mathbf{y}s/cons(x,ys)\}} \\ & il(s(x),ys) & \rightarrow & il(x,cons(x,ys)) \end{array} \right| \ell\theta^n = il(s^{n+1}(x),ys) \rightarrow il(s^n(x),cons(s^n(x),ys)) \rightarrow \dots$$

Decreasing Loops

Definition (Decreasing Loop)

 $\ell \rightarrow^+ C[r]$ is a *decreasing loop* if there are variables x_1, \ldots, x_m and positions π_1, \ldots, π_m s.t.:

$\bullet~\ell$ linear and basic

•
$$\ell|_{\pi_i} = x_i$$

•
$$r|_{\xi_i} = x_i$$
 for some $\xi_i < \pi_i$

• $\overline{\ell}$ matches r

Theorem

If a TRS has a decreasing loop, then $rc(n) \in \Omega(n)$.

Decreasing Loops

Definition (Decreasing Loop)

 $\ell \rightarrow^+ C[r]$ is a *decreasing loop* if there are variables x_1, \ldots, x_m and positions π_1, \ldots, π_m s.t.:

$\bullet~\ell$ linear and basic

•
$$\ell|_{\pi_i} = x_i$$

•
$$r|_{\xi_i} = x_i$$
 for some $\xi_i < \pi_i$

• $\overline{\ell}$ matches r

Theorem

If a TRS has a decreasing loop, then $rc(n) \in \Omega(n)$.

Decreasing Loops

Definition (Decreasing Loop)

 $\ell \rightarrow^+ C[r]$ is a *decreasing loop* if there are variables x_1, \ldots, x_m and positions π_1, \ldots, π_m s.t.:

$\bullet~\ell$ linear and basic

•
$$\ell|_{\pi_i} = x_i$$

•
$$r|_{\xi_i} = x_i$$
 for some $\xi_i < \pi_i$

• $\overline{\ell}$ matches r

Theorem

If a TRS has a decreasing loop, then $rc(n) \in \Omega(n)$.

F. Frohn (RWTH Aachen)

Fibonacci $fib(s(s(x))) \rightarrow p(fib(s(x)), fib(x))$

Fibonacci

 $fib(s(s(x))) \rightarrow p(fib(s(x)), fib(x))$

$fib(s(s(x))) \rightarrow p(fib(s(x)), fib(x))$

$$\overline{\ell} = fib(s(x)) \qquad \overline{\ell}' = fib(x)$$

$$fib(s(s(x))) \rightarrow C[fib(s(x))] \qquad fib(s(s(x))) \rightarrow C'[fib(x)]$$

$fib(s(s(x))) \rightarrow p(fib(s(x)), fib(x))$

$$\overline{\ell} = fib(s(x))$$

$$\stackrel{\theta_{\kappa'}}{\longrightarrow} \stackrel{\theta_{\kappa'}}{\longrightarrow} C[fib(s(x))]$$

$$\vec{\ell}' = fib(x)$$

$$\stackrel{\theta' \swarrow}{\swarrow} \stackrel{\sim}{\searrow} \stackrel{\emptyset}{\longrightarrow} \mathcal{C}'[fib(x)]$$

$fib(s(s(x))) \rightarrow p(fib(s(x)), fib(x))$

$$\overline{\ell} = fib(s(x))$$

$$\stackrel{\theta_{x'}}{\longrightarrow} \stackrel{\theta_{y'}}{\longrightarrow} C[fib(s(x))]$$

$$\overline{\ell}' = fib(x)$$
$$fib(s(s(x))) \rightarrow C'[fib(x)]$$

 $tr(n(x,y)) \rightarrow n(tr(x),tr(y))$

$tr(n(x,y)) \rightarrow n(tr(x),tr(y))$

$tr(n(x,y)) \rightarrow n(tr(x),tr(y))$

$$\overline{\ell}' = tr(y)$$

$$\stackrel{\theta' \not\sim}{\sim} \sum_{\mathbf{x} \neq \emptyset} \mathcal{C}'[tr(y)]$$

$$tr(n(x,y)) \rightarrow n(tr(x),tr(y))$$

$$\overline{\ell} = tr(x)$$

$$\stackrel{\theta_{x'}}{\longrightarrow} \stackrel{\theta_{y'}}{\longrightarrow} C[tr(x)]$$

$$\overline{\ell}' = tr(y)$$

$$\stackrel{\theta' \not\sim}{\sim} \sum_{x \not\in \theta} C'[tr(y)]$$

$$tr(n(x,y)) \rightarrow n(tr(x),tr(y))$$

$$\overline{\ell} = tr(x)$$

$$\stackrel{\theta_{\kappa'}}{\longrightarrow} \stackrel{\theta_{\kappa'}}{\longrightarrow} C[tr(x)]$$

$$\overline{\ell}' = tr(y)$$

$$\stackrel{\theta' \not \sim}{\overset{\psi'}{}} \xrightarrow{\overset{\psi}{}} C'[tr(y)]$$

Multiple Decreasing Loops

Commutativity

$$\theta \theta' \stackrel{?}{=} \theta' \theta$$

$$\overline{\ell} = tr(x)$$

$$\theta_{\kappa'} \stackrel{\sim}{\longrightarrow} \theta$$

$$tr(n(x,y)) \rightarrow C[tr(x)]$$

$$\overline{\ell}' = tr(y)$$

$$\theta'_{\kappa'} \stackrel{\sim}{\longrightarrow} \theta$$

$$tr(n(x,y)) \rightarrow C'[tr(y)]$$

 $\theta\theta' = \{x/n(x, n(x, y)), \dots\} \neq \{x/n(x, y), \dots\} = \theta'\theta$

Commutativity

$$\theta \theta' \stackrel{?}{=} \theta' \theta$$

$$\overline{\ell} = tr(x)$$

$$\theta_{K} \stackrel{\circ}{\longrightarrow} \theta$$

$$tr(n(x,y)) \rightarrow C[tr(x)]$$

$$\overline{\ell}' = tr(y)$$

$$\theta'_{K} \stackrel{\circ}{\longrightarrow} \theta'$$

$$tr(n(x,y)) \rightarrow C'[tr(y)]$$

 $\theta\theta' = \{x/n(x, n(x, y)), \dots\} \neq \{x/n(x, y), \dots\} = \theta'\theta$

Compatible Decreasing Loops

Definition

Two decreasing loops are compatible iff

- σ and σ' don't interfere with θ and θ'
- $\theta \, \theta' = \theta' \theta$

Theorem

If a TRS has b compatible decreasing loops, then ${
m rc}(n)\in \Omega(b^n).$

Compatible Decreasing Loops

Definition

Two decreasing loops are *compatible* iff

- σ and σ' don't interfere with θ and θ'
- $\theta \, \theta' = \theta' \theta$

Theorem

If a TRS has b compatible decreasing loops, then $\mathsf{rc}(n)\in \Omega(b^n).$

Compatible Decreasing Loops

Definition

Two decreasing loops are compatible iff

- σ and σ' don't interfere with θ and θ'
- $\theta \, \theta' = \theta' \theta$

Theorem

If a TRS has b compatible decreasing loops, then $rc(n) \in \Omega(b^n)$.

Experiments (865 Examples)

AProVE without Decreasing Loops

rc(<i>n</i>)	$\Omega(1)$	$\Omega(n)$	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^{>3})$	$\Omega(2^n)$	$\Omega(3^n)$	$\Omega(\omega)$
Σ	192	572	73	14	1	12	1	—

AProVE with Decreasing Loops

rc(<i>n</i>)	$\Omega(1)$	$\Omega(n)$	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^{>3})$	$\Omega(2^n)$	$\Omega(3^n)$	$\Omega(\omega)$
Σ	29	533	56	11	1	144	1	90

• Generalized Loops to prove linear lower bounds

- Generalized Loops to prove exponential lower bounds
- \bullet Experimental results \rightarrow applicable to almost all TRSs from TPDB

- Generalized Loops to prove linear lower bounds
- Generalized Loops to prove exponential lower bounds
- \bullet Experimental results \rightarrow applicable to almost all TRSs from TPDB

- Generalized Loops to prove linear lower bounds
- Generalized Loops to prove exponential lower bounds
- $\bullet~\mathsf{Experimental}~\mathsf{results}\to\mathsf{applicable}$ to almost all TRSs from TPDB

Consider the class of linear basic TRSs.

- $\operatorname{rc}(n) \in \Omega(n)$ $\implies \operatorname{rc}(n) \notin \mathcal{O}(1)$
- ↔ narrowing basic terms does not terminate
- \iff rewriting *infinite* basic terms does not terminate

Let $\mathcal{R}_{\mathcal{M}}$ be the TRS encoding the Turing machine $\mathcal{M}.$

Consider the class of linear basic TRSs.

 $\operatorname{rc}(n) \in \Omega(n)$

⇒ narrowing basic terms does not terminate

⇐⇒ rewriting *infinite* basic terms does not terminate

Let $\mathcal{R}_{\mathcal{M}}$ be the TRS encoding the Turing machine $\mathcal{M}.$

Consider the class of linear basic TRSs.

$\begin{array}{l} \operatorname{rc}(n) \in \Omega(n) \\ \Leftrightarrow \quad \operatorname{rc}(n) \notin \mathcal{O}(1) \end{array}$

- ⇒ narrowing basic terms does not terminate
- \iff rewriting *infinite* basic terms does not terminate

Let $\mathcal{R}_{\mathcal{M}}$ be the TRS encoding the Turing machine \mathcal{M} .

Consider the class of linear basic TRSs.

- $\begin{aligned} \operatorname{rc}(n) \in \Omega(n) \\ \Longleftrightarrow \quad \operatorname{rc}(n) \notin \mathcal{O}(1) \end{aligned}$
- \iff narrowing basic terms does not terminate
- ⇔ rewriting *infinite* basic terms does not terminate

Let $\mathcal{R}_{\mathcal{M}}$ be the TRS encoding the Turing machine $\mathcal{M}.$

Consider the class of linear basic TRSs.

- $\begin{array}{l} \operatorname{rc}(n) \in \Omega(n) \\ \Longleftrightarrow \quad \operatorname{rc}(n) \notin \mathcal{O}(1) \end{array}$
- \iff narrowing basic terms does not terminate
- $\iff \mathsf{rewriting} \; \textit{infinite} \; \mathsf{basic} \; \mathsf{terms} \; \mathsf{does} \; \mathsf{not} \; \mathsf{terminate}$

Let $\mathcal{R}_{\mathcal{M}}$ be the TRS encoding the Turing machine $\mathcal{M}.$

Consider the class of linear basic TRSs.

- $\begin{aligned} \mathsf{rc}(n) \in \Omega(n) \\ \Longleftrightarrow \quad \mathsf{rc}(n) \notin \mathcal{O}(1) \end{aligned}$
- \iff narrowing basic terms does not terminate
- $\iff \mathsf{rewriting} \; \textit{infinite} \; \mathsf{basic} \; \mathsf{terms} \; \mathsf{does} \; \mathsf{not} \; \mathsf{terminate}$
- Let $\mathcal{R}_{\mathcal{M}}$ be the TRS encoding the Turing machine \mathcal{M} .

Consider the class of linear basic TRSs.

- $\operatorname{rc}(n) \in \Omega(n) \ \iff \operatorname{rc}(n) \notin \mathcal{O}(1)$
- $\iff \mathsf{narrowing} \mathsf{ basic terms does not terminate}$
- $\iff \mathsf{rewriting} \; \textit{infinite} \; \mathsf{basic} \; \mathsf{terms} \; \mathsf{does} \; \mathsf{not} \; \mathsf{terminate}$

Let $\mathcal{R}_{\mathcal{M}}$ be the TRS encoding the Turing machine $\mathcal{M}.$

- Generalized Loops to prove linear lower bounds
- Generalized Loops to prove exponential lower bounds
- $\bullet~\mathsf{Experimental}~\mathsf{results}\to\mathsf{applicable}$ to almost all TRSs from TPDB
- Decidability of $rc(n) \in \Omega(n)$

Experiments (865 Examples)

Without Decreasing Loops

$rc_{\mathcal{R}}(n)$	$\Omega(1)$	$\Omega(n)$	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^{>3})$	$\Omega(2^n)$	$\Omega(3^n)$	$\Omega(\omega)$
$\mathcal{O}(1)$	(34)	—	—	-	-	—	-	—
$\mathcal{O}(n)$	41	114	-	-	-	-	-	-
$O(n^2)$	5	10	3	-	-	-	-	-
$\mathcal{O}(n^3)$	1	1	1	1	-	-	-	-
$\mathcal{O}(n^{>3})$	-	2	-	-	-	-	-	-
$\mathcal{O}(2^n)$	-	-	-	-	-	-	-	-
$\mathcal{O}(3^n)$	-	-	-	-	-	-	-	-
$\mathcal{O}(\omega)$	145	445	69	13	1	12	1	-

With Decreasing Loops

$\operatorname{rc}_{\mathcal{R}}(n)$	$\Omega(1)$	Ω(<i>n</i>)	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^{>3})$	$\Omega(2^n)$	$\Omega(3^n)$	$\Omega(\omega)$
$\mathcal{O}(1)$	(34)	—	-	-	—	-	-	—
$\mathcal{O}(n)$	15	140	-	-	-	-	-	-
$\mathcal{O}(n^2)$	-	15	3	-	-	-	-	-
$\mathcal{O}(n^3)$	-	2	1	1	-	-	-	-
$\mathcal{O}(n^{>3})$	-	2	-	-	-	-	-	-
$\mathcal{O}(2^n)$	-	-	-	-	-	-	-	-
$\mathcal{O}(3^n)$	-	-	-	-	-	-	-	-
$\mathcal{O}(\omega)$	14	374	52	10	1	144	1	90

F. Frohn (RWTH Aachen)